The epigenetic regulation of imprinted genes via monoallelic DNA methylation of either maternal or paternal alleles is critical for embryonic growth and development1. Imprinted genes were recently shown to be expressed in mammalian adult stem cells to support self-renewal of neural and lung stem cells2, 3,4; however, a role for imprinting per se in adult stem cells remains elusive. Here we show up-regulation of growth-restricting imprinted genes, including within the H19-Igf2 locus5, in long-term hematopoietic stem cells (LT-HSCs) and their down-regulation upon HSC activation and proliferation. A differentially methylated region (DMR) upstream of H19 (H19-DMR), serving as the imprinting control region, determines the reciprocal expression of H19 from the maternal allele and Igf2 from the paternal allele1. In addition, H19 also serves as a source of miR-675, which restricts Igf1r expression6. We demonstrated that conditional deletion of the maternal but not the paternal H19-DMR reduced adult HSC quiescence, a state required for long-term maintenance of HSCs, and compromised HSC function. Maternal-specific H19-DMR deletion resulted in activation of the Igf2-Igfr1 pathway as revealed by the translocation of phosphorylated Foxo3 (an inactive form) from nucleus to cytoplasm and the release of Foxo3-mediated cell-cycle arrest, thus leading to increased activation, proliferation, and eventual exhaustion of HSCs. Mechanistically, maternal-specific H19-DMR deletion led to Igf2 up-regulation and increased translation of Igf1r, which is normally suppressed by H19-derived miR-675. Similarly, genetic inactivation of Igf1r partially rescued the H19-DMR deletion phenotype. Our work establishes a novel role for this unique form of epigenetic control at the H19-Igf2 locus in maintaining adult stem cells.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is a vector for the causative agents of Huanglongbing, which threatens citrus production worldwide. This study reports and discusses the first D. citri transcriptomes, encompassing the three main life stages of D. citri, egg, nymph and adult. The transcriptomes were annotated using Gene Ontology (GO) and insecticide-related genes within each life stage were identified to aid the development of future D. citri insecticides. Transcriptome assemblies and other sequence data are available for download at the International Asian Citrus Psyllid Genome Consortium website [http://psyllid.org/download] and at NCBI [http://www.ncbi.nlm.nih.gov/bioproject/29447].
The objectives of the present study were to determine 1) if temporal variability influenced the toxicity of Elkhorn River water and 2) if the toxic effect was consistent between two sentinel organisms, the fathead minnow (Pimephales promelas) and the northern leopard frog (Rana pipiens). During spring 2012, atrazine indicator strips were used to document the occurrence of agrichemical pulses in the Elkhorn River. Polar organic chemical integrative samplers (POCIS) were deployed for 14 d during both a pulse and post-pulse period as indicated by the atrazine strips. Pesticide concentrations detected in the POCIS extracts ranged from 1.6 to 281 fold higher during the pulse period compared to the post-pulse period. Fish and frog bioassays were conducted for 7 d, and hepatic mRNA expression of vitellogenin (Vtg) and estrogen receptor-α (ERα) was determined by quantitative real-time PCR (RT-qPCR). Compared to lab water controls, fish exposed to water collected during an agrichemical pulse experienced significant reductions in Vtg and ERα, whereas exposed female frogs did not. Male leopard frogs, in contrast experienced significant increases in the expression of ERα, whereas pulse exposed male minnows did not. The significant effects observed following agrichemical pulse exposure demonstrate 1) that episodic agrichemical runoff adversely impacts sentinel organisms, and 2) that the adverse impacts observed depends upon the sex and species of the sentinel organism.
The last 2 decades have produced a better understanding of insect-microbial associations and yielded some important opportunities for insect control. However, most of our knowledge comes from model systems. Thrips (Thysanoptera: Thripidae) have been understudied despite their global importance as invasive species, plant pests and disease vectors. Using a culture and primer independent next-generation sequencing and metagenomics pipeline, we surveyed the bacteria of the globally important pest, Scirtothrips dorsalis Hood. The most abundant bacterial phyla identified were Actinobacteria and Proteobacteria and the most abundant genera were Propionibacterium, Stenotrophomonas, and Pseudomonas. A total of 189 genera of bacteria were identified. The absence of any vertically transferred symbiont taxa commonly found in insects is consistent with other studies suggesting that thrips primarilly acquire resident microbes from their environment. This does not preclude a possible beneficial/intimate association between S. dorsalis and the dominant taxa identified and future work should determine the nature of these associations.
The northern leopard frog Rana (Lithobates) pipiens is an important animal model, being used extensively in cancer, neurology, physiology, and biomechanical studies. R. pipiens is a native North American frog whose range extends from northern Canada to southwest United States, but over the past few decades its populations have declined significantly and is now considered uncommon in large portions of the United States and Canada. To aid in the study and conservation of R. pipiens, this paper describes the first R. pipiens transcriptome. The R. pipiens transcriptome was annotated using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Eukaryotic Orthologous Groups (KOG). Differential expression analysis revealed universal and tissue specific genes, and endocrine-related genes were identified. Transcriptome assemblies and other sequence data are available for download.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.