Head and neck squamous cell carcinoma (HNSCC) is a very aggressive cancer. In advanced stages, the patient has poor chances of receiving effective treatment, and survival rates are low. To facilitate timely diagnosis and improve treatment, elucidation of early detection markers is crucial. DNA methylation markers are particularly advantageous because DNA methylation is an early event in tumorigenesis, and the epigenetic modification, 5-methylcytosine, is a stable mark. A genome-wide screen using Restriction Landmark Genomic Scanning found a set of genes that are most commonly methylated in head and neck cancers. Five candidate genes: septin 9 (SEPT9), sodium-coupled monocarboxylate transporter 1 (SLC5A8), functional smad-suppressing element on chromosome 18 (FUSSEL18), early B-cell factor 3 (EBF3), and iroquois homeobox 1 (IRX1) were methylated in 27% to 67% of the HNSCC patient samples tested. Furthermore, f50% of the methylated tumor samples shared methylation between two of the five genes (most commonly between EBF3 and IRX1), and 15% shared methylation between three of the five genes. Expression analysis revealed candidate gene down-regulation in 25% to 93% of the HNSCC samples, and 5-aza-2 ¶-deoxycytidine treatment was able to restore expression in at least 2 of 5 HNSCC cell lines for all of the genes tested. Overexpression of the three most frequently down-regulated candidates, SLC5A8, IRX1, and EBF3, validated their tumor suppressor potential by growth curve analysis and colony formation assay. Interestingly, all of the candidates identified may be involved in the transforming growth factor B signaling pathway, which is often disrupted in HNSCC. [Cancer Res 2008;68(12):4494-9]
We observed that decitabine and valproic acid are an effective combination in reactivating hypermethylated genes as demonstrated by re-expressing fetal hemoglobin. This combination in patients with advanced stage IV NSCLC, however, is limited by unacceptable neurological toxicity at a relatively low dosage. Combining hypomethylating agents with alternative HDAC inhibitors that lack the toxicity of VPA should be explored further.
Allelic imbalances in premalignant villous adenomas were compared with those in adjacent microdissected colorectal carcinoma that had arisen directly from the adenomas. Carcinoma-adenoma pairs were examined from 17 patients who underwent resections for colorectal cancer. In all, 28 microsatellite markers were examined, from regions of the genome where individual allelic losses have been associated with overall genomic instability in colorectal carcinomas. Microsatellite instability (MSI) was also evaluated for each marker in each tissue type. Loss of heterozygosity for multiple markers was found in 35% of adenomas and 65% of carcinomas; the average fractional allelic loss rate was 2.5 times higher in carcinomas than in adenomas. Of the 17 patients, 4 had MSI for >30% of markers in both adenoma and carcinoma, with no significant differences between the two tissues. Markers with particularly high imbalance rates in adenomas were seen on chromosomes 11, 14, and 15. These findings provide further evidence that genomic instability is an ongoing process during carcinogenesis, with a markedly increased frequency of allelic losses seen in carcinomas, compared with adjacent adenomas. Markers on chromosomes 11, 14, and 15 may become valuable tools in the identification of patients destined to progress to colorectal carcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.