Phytosulfokine (PSK) is a phytohormone responsible for cell-to-cell communication in plants, playing a pivotal role in plant development and growth. The binding of PSK to its cognate receptor, PSKR1, is modulated by the formation of a binding site located between a leucine-rich repeat (LRR) domain of PSKR1 and the loop located in the receptor’s island domain (ID). The atomic resolution structure of the extracellular PSKR1 bound to PSK has been reported, however, the intrinsic dynamics of PSK binding and the architecture of the PSKR1 binding site remain to be understood. In this work, we used atomistic molecular dynamics (MD) simulations and free energy calculations to elucidate how the PSKR1 island domain (ID) loop forms and binds PSK. Moreover, we report a novel “druggable” binding site which could be exploited for the targeted modulation of the PSKR1-PSK binding by small molecules. We expect that our results will open new ways to modulate the PSK signalling cascade via small molecules, which can result in new crop control and agricultural applications.
The androgen receptor (AR) is an important drug target in prostate cancer and a driver of castration-resistant prostate cancer (CRPC). A significant challenge in designing effective drugs lies in targeting constitutively active AR variants and, most importantly, nearly all AR variants lacking the ligand-binding domain (LBD). Recent findings show that an AR’s constitutive activity may occur in the presence of somatic DNA mutations within non-coding regions, but the role of these mutations remains elusive. The discovery of new drugs targeting CRPC is hampered by the limited molecular understanding of how AR binds mutated DNA sequences, frequently observed in prostate cancer, and how mutations within the protein and DNA regulate AR-DNA interactions. Using atomistic molecular dynamics (MD) simulations and quantum mechanical calculations, we focused our efforts on (i) rationalising the role of several activating DBD mutations linked to prostate cancer, and (ii) DBD interactions in the presence of abasic DNA lesions, which frequently occur in CRPC. Our results elucidate the role of mutations within DBD through their modulation of the intrinsic dynamics of the DBD-DNA ternary complex. Furthermore, our results indicate that the DNA apurinic lesions occurring in the androgen-responsive element (ARE) enhance direct AR-DNA interactions and stabilise the DBD homodimerisation interface. Moreover, our results strongly suggest that those abasic lesions may form reversible covalent crosslinks between DNA and lysine residues of an AR via a Schiff base. In addition to providing an atomistic model explaining how protein mutations within the AR DNA-binding domain affect AR dimerisation and AR-DNA interactions, our findings provide insight into how somatic mutations occurring in DNA non-coding regions may activate ARs. These mutations are frequently observed in prostate cancer and may contribute to disease progression by enhancing direct AR-DNA interactions.
Phytosulfokine (PSK) is a phytohormone responsible for cell-to-cell communication in plants, playing pivotal role in plant development and growth. The binding of PSK to its cognate receptor, PSKR1, is modulated by the formation of a binding site located between leucine-rich repeat (LRR) domain of PSKR1 and the loop located in the receptor’s island domain (ID). The atomic resolution structure of the extracellular PSKR1 bound to PSK has been reported, however, the intrinsic dynamics of PSK binding and the architecture of PSKR1 binding site remain to be understood. In this work, we used atomistic molecular dynamics (MD) simulations and free energy calculations to elucidate how the PSKR1 island domain (ID) loop forms and binds PSK. Moreover, we report a novel “druggable” binding site which could be exploited for the targeted modulation of the PSKR1-PSK binding by small molecules. We expect that our results will open new ways to modulate the PSK signalling cascade via small molecules, which can result in new crop control and agricultural applications.
Per-Arnt-Sim (PAS) domains are evolutionarily-conserved regions found in proteins in all living systems, involved in transcriptional regulation and the response to hypoxic and xenobiotic stress. Despite having low primary sequence similarity, they show an impressively high structural conservation. Nonetheless, understanding the underlying mechanisms that drive the biological function of the PAS domains remains elusive. In this work, we used molecular dynamics simulations and bioinformatics tools in order the investigate the molecular characteristics that govern the intrinsic dynamics of five PAS-B domains (human AhR receptor, NCOA1, HIF1α, and HIF2α transcription factors, and Drosophila Suzukii (D. Suzukii) juvenile hormone receptor JHR). First, we investigated the effects of different length of N and C terminal regions of the AhR PAS-B domain, showing that truncation of those segments directly affects structural stability and aggregation propensity of the domain. Secondly, using the recently annotated PAS-B located in the methoprene-tolerant protein/juvenile hormone receptor (JHR) from D. Suzukii, we have shown that the mutation of the highly conserved “gatekeeper” tyrosine to phenylalanine (Y322F) does not affect the stability of the domain. Finally, we investigated possible redox-regulation of the AhR PAS-B domain by focusing on the cysteinome residues within PAS-B domains. The cysteines in AhR PAS-B are directly regulating the dynamics of the small molecule ligand-gating loop (residues 305 to 326). In conclusion, we comprehensibly described several molecular features governing the behaviour of PAS-B domains in solution, which may lead to a better understanding of the forces driving their biological functions.
Phytosulfokine (PSK) is a phytohormone responsible for cell-to-cell communication in plants, playing pivotal role in plant development and growth. The binding of PSK to its cognate receptor, PSKR1, is modulated by the formation of a binding site located between leucine-rich repeat (LRR) domain of PSKR1 and the loop located in the receptor’s island domain (ID). The atomic resolution structure of the extracellular PSKR1 bound to PSK has been reported, however, the intrinsic dynamics of PSK binding and the architecture of PSKR1 binding site remain to be understood. In this work, we used atomistic molecular dynamics (MD) simulations and free energy calculations to elucidate how the PSKR1 island domain (ID) loop forms and binds PSK. Moreover, we report a novel “druggable” binding site which could be exploited for the targeted modulation of the PSKR1-PSK binding by small molecules. We expect that our results will open new ways to modulate the PSK signalling cascade via small molecules, which can result in new crop control and agricultural applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.