Tens of millions of people in south and southeast Asia routinely consume ground water that has unsafe arsenic levels. Arsenic is naturally derived from eroded Himalayan sediments, and is believed to enter solution following reductive release from solid phases under anaerobic conditions. However, the processes governing aqueous concentrations and locations of arsenic release to pore water remain unresolved, limiting our ability to predict arsenic concentrations spatially (between wells) and temporally (future concentrations) and to assess the impact of human activities on the arsenic problem. This uncertainty is partly attributed to a poor understanding of groundwater flow paths altered by extensive irrigation pumping in the Ganges-Brahmaputra delta, where most research has focused. Here, using hydrologic and (bio)geochemical measurements, we show that on the minimally disturbed Mekong delta of Cambodia, arsenic is released from near-surface, river-derived sediments and transported, on a centennial timescale, through the underlying aquifer back to the river. Owing to similarities in geologic deposition, aquifer source rock and regional hydrologic gradients, our results represent a model for understanding pre-disturbance conditions for other major deltas in Asia. Furthermore, the observation of strong hydrologic influence on arsenic behaviour indicates that release and transport of arsenic are sensitive to continuing and impending anthropogenic disturbances. In particular, groundwater pumping for irrigation, changes in agricultural practices, sediment excavation, levee construction and upstream dam installations will alter the hydraulic regime and/or arsenic source material and, by extension, influence groundwater arsenic concentrations and the future of this health problem.
Background: Pit latrines are one of the most common human excreta disposal systems in low-income countries, and their use is on the rise as countries aim to meet the sanitation-related target of the Millennium Development Goals. There is concern, however, that discharges of chemical and microbial contaminants from pit latrines to groundwater may negatively affect human health.Objectives: Our goals were to a) calculate global pit latrine coverage, b) systematically review empirical studies of the impacts of pit latrines on groundwater quality, c) evaluate latrine siting standards, and d) identify knowledge gaps regarding the potential for and consequences of groundwater contamination by latrines.Methods: We used existing survey and population data to calculate global pit latrine coverage. We reviewed the scientific literature on the occurrence of contaminants originating from pit latrines and considered the factors affecting transport of these contaminants. Data were extracted from peer-reviewed articles, books, and reports identified using Web of ScienceSM, PubMed, Google, and document reference lists.Discussion: We estimated that approximately 1.77 billion people use pit latrines as their primary means of sanitation. Studies of pit latrines and groundwater are limited and have generally focused on only a few indicator contaminants. Although groundwater contamination is frequently observed downstream of latrines, contaminant transport distances, recommendations based on empirical studies, and siting guidelines are variable and not well aligned with one another.Conclusions: In order to improve environmental and human health, future research should examine a larger set of contextual variables, improve measurement approaches, and develop better criteria for siting pit latrines.
Arsenic is a contaminant in the groundwater of Holocene aquifers in Bangladesh, where Ϸ57 million people drink water with arsenic levels exceeding the limits set by the World Health Organization. Although arsenic is native to the sediments, the means by which it is released to groundwater remains unresolved. Contrary to the current paradigm, ferric (hydr)oxides appear to dominate the partitioning of arsenic in the near surface but have a limited impact at aquifer depths where wells extract groundwater with high arsenic concentrations. We present a sequence of evidence that, taken together, suggest that arsenic may be released in the near surface and then transported to depth. We establish that (i) the only portion of the sediment profile with conditions destabilizing to arsenic in our analysis is in the surface or near-surface environment; (ii) a consistent input of arsenic via sediment deposition exists; (iii) retardation of arsenic transport is limited in the aquifers; and (iv) groundwater recharge occurs at a rate sufficient to necessitate continued input of arsenic to maintain observed concentrations. Our analyses thus lead to the premise that arsenic is liberated in surface and near-surface sediments through cyclic redox conditions and is subsequently transported to well depth. Influx of sediment and redox cycling provide a long-term source of arsenic that when liberated in the near surface is only weakly partitioned onto sediments deeper in the profile and is transported through aquifers by groundwater recharge.redox ͉ Ferric (hydr)oxides R esolving the processes responsible for high concentrations of dissolved arsenic is essential for addressing the human health calamity within Bangladesh and West Bengal, India (1), where we are witnessing the largest mass poisoning in history. Furthermore, deciphering the processes and conditions responsible for arsenic partitioning to the aqueous phase within the Ganges-Brahmaputra Delta may also help diminish arsenicinduced hazards within deltas throughout subtropical and tropical regions of Asia. Although important work has been done to this end, numerous observations conflict with the prevailing theory that reductive dissolution of iron (hydr)oxides at well depth (i.e., 30-50 m) results in the high concentration of arsenic within drinking water (2-6). Although iron (hydr)oxides have been detected in oxidized upper sediments (7), as well as in orange Pleistocene sediments (8, 9), they do not appear widespread in the gray Holocene aquifer at depths of (and below) the highest arsenic concentrations (6,8,9). Moreover, proxies for active bacterial metabolism, namely redox potential (refs. 4,5, and 10 and www.bgs.ac.uk͞arsenic͞Bangladesh), concentration of dissolved electron acceptors (e.g., sulfate, Fig. 1) and their products (e.g., methane), and molecular hydrogen (4), are all inconsistent with ongoing ferric-iron reduction at well depths of 30 to 40 m. Finally, solid-phase arsenic concentrations in the aquifer sediments are relatively low (typically Ͻ3 mg͞kg) compared ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.