Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (p<0.005). Low sodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects.
SummaryBackground and objectives Systolic BP and large elastic artery stiffness both increase with age and are reduced by dietary sodium restriction. Production of the natriuretic hormone marinobufagenin, an endogenous a1 Na+, K+-ATPase inhibitor, is increased in salt-sensitive hypertension and contributes to the rise in systolic BP during sodium loading.Design, setting, participants, & measurements The hypothesis was that dietary sodium restriction performed in middle-aged/older adults (eight men and three women; 6062 years) with moderately elevated systolic BP (13962/8362 mmHg) would reduce urinary marinobufagenin excretion as well as systolic BP and aortic pulsewave velocity (randomized, placebo-controlled, and crossover design). This study also explored the associations among marinobufagenin excretion with systolic BP and aortic pulse-wave velocity across conditions of 5 weeks of a low-sodium (7769 mmol/d) and 5 weeks of a normal-sodium (14467 mmol/d) diet.Results Urinary marinobufagenin excretion (weekly measurements; 25.461.8 versus 30.762.1 pmol/kg per day), systolic BP (12763 versus 13865 mmHg), and aortic pulse-wave velocity (700640 versus 843636 cm/s) were lower during the low-versus normal-sodium condition (all P,0.05). Across all weeks, marinobufagenin excretion was related with systolic BP (slope=0.61, P,0.001) and sodium excretion (slope=0.46, P,0.001). These associations persisted during the normal-but not the low-sodium condition (both P,0.005). Marinobufagenin excretion also was associated with aortic pulse-wave velocity (slope=0.70, P=0.02) and endothelial cell expression of NAD(P)H oxidase-p47phox (slope=0.64, P=0.006).Conclusions These results show, for the first time in humans, that dietary sodium restriction reduces urinary marinobufagenin excretion and that urinary marinobufagenin excretion is positively associated with systolic BP, aortic stiffness (aortic pulse-wave velocity), and endothelial cell expression of the oxidant enzyme NAD(P)H oxidase. Importantly, marinobufagenin excretion is positively related to systolic BP over ranges of sodium intake typical of an American diet, extending previous observations in rodents and humans fed experimentally highsodium diets.
Dietary nitrate (NO3−) is converted to nitrite (NO2−) and can be further reduced to the vasodilator nitric oxide (NO) amid a low O2 environment. Accordingly, dietary NO3− increases hind limb blood flow in rats during treadmill exercise; however, the evidence of such an effect in humans is unclear. We tested the hypothesis that acute dietary NO3− (via beetroot [BR] juice) increases forearm blood flow (FBF) via local vasodilation during handgrip exercise in young adults (n = 11; 25 ± 2 years). FBF (Doppler ultrasound) and blood pressure (Finapres) were measured at rest and during graded handgrip exercise at 5%, 15%, and 25% maximal voluntary contraction (MVC) lasting 4 min each. At the highest workload (25% MVC), systemic hypoxia (80% SaO2) was induced and exercise continued for three additional minutes. Subjects ingested concentrated BR (12.6 mmol nitrate (n = 5) or 16.8 mmol nitrate (n = 6) and repeated the exercise bout either 2 (12.6 mmol) or 3 h (16.8 mmol) postconsumption. Compared to control, BR significantly increased FBF at 15% MVC (184 ± 15 vs. 164 ± 15 mL/min), 25% MVC (323 ± 27 vs. 286 ± 28 mL/min), and 25% + hypoxia (373 ± 39 vs. 343 ± 32 mL/min) and this was due to increases in vascular conductance (i.e., vasodilation). The effect of BR on hemodynamics was not different between the two doses of BR ingested. Forearm VO2 was also elevated during exercise at 15% and 25% MVC. We conclude that acute increases in circulating NO3− and NO2− via BR increases muscle blood flow during moderate‐ to high‐intensity handgrip exercise via local vasodilation. These findings may have important implications for aging and diseased populations that demonstrate impaired muscle perfusion and exercise intolerance.
Red blood cells (RBCs) release ATP in response to deoxygenation, which can increase blood flow to help match oxygen supply with tissue metabolic demand. r This release of ATP is impaired in RBCs from older adults, but the underlying mechanisms are unknown. r In this study, improving RBC deformability in older adults restored deoxygenation-induced ATP release, whereas decreasing RBC deformability in young adults reduced ATP release to the level of that of older adults. r In contrast, treating RBCs with a phosphodiesterase 3 inhibitor did not affect ATP release in either age group, possibly due to intact intracellular signalling downstream of deoxygenation as indicated by preserved cAMP and ATP release responses to pharmacological G i protein activation in RBCs from older adults. r These findings are the first to demonstrate that the age-related decrease in RBC deformability is a primary mechanism of impaired deoxygenation-induced ATP release, which may have implications for treating impaired vascular control with advancing age.
Skeletal muscle haemodynamics and circulating adenosine triphosphate (ATP) responses during hypoxia and exercise are blunted in older (OA) vs. young (YA) adults, which may be associated with impaired red blood cell (RBC) ATP release. Rho‐kinase inhibition improves deoxygenation‐induced ATP release from OA isolated RBCs. We tested the hypothesis that Rho‐kinase inhibition (via fasudil) in vivo would improve local haemodynamic and ATP responses during hypoxia and exercise in OA. Healthy YA (25 ± 3 years; n = 12) and OA (65 ± 5 years; n = 13) participated in a randomized, double‐blind, placebo‐controlled, crossover study on two days (≥5 days between visits). A forearm deep venous catheter was used to administer saline/fasudil and sample venous plasma ATP ([ATP]V). Forearm vascular conductance (FVC) and [ATP]V were measured at rest, during isocapnic hypoxia (80% SpnormalO2${S_{{\rm{p}}{{\rm{O}}_{\rm{2}}}}}$), and during graded rhythmic handgrip exercise that was similar between groups (5, 15 and 25% maximum voluntary contraction (MVC)). Isolated RBC ATP release was measured during normoxia/hypoxia. With saline, ΔFVC was lower (P < 0.05) in OA vs. YA during hypoxia (∼60%) and during 15 and 25% MVC (∼25–30%), and these impairments were abolished with fasudil. Similarly, [ATP]V and ATP effluent responses from normoxia to hypoxia and rest to 25% MVC were lower in OA vs. YA and improved with fasudil (P < 0.05). Isolated RBC ATP release during hypoxia was impaired in OA vs. YA (∼75%; P < 0.05), which tended to improve with fasudil in OA (P = 0.082). These data suggest Rho‐kinase inhibition improves haemodynamic responses to hypoxia and moderate intensity exercise in OA, which may be due in part to improved circulating ATP. Key points Skeletal muscle blood flow responses to hypoxia and exercise are impaired with age. Blunted increases in circulating ATP, a vasodilator, in older adults may contribute to age‐related impairments in haemodynamics. Red blood cells (RBCs) are a primary source of circulating ATP, and treating isolated RBCs with a Rho‐kinase inhibitor improves age‐related impairments in deoxygenation‐induced RBC ATP release. In this study, treating healthy older adults systemically with the Rho‐kinase inhibitor fasudil improved blood flow and circulating ATP responses during hypoxia and moderate intensity handgrip exercise compared to young adults, and also tended to improve isolated RBC ATP release. Improved blood flow regulation with fasudil was also associated with increased skeletal muscle oxygen delivery during hypoxia and exercise in older adults. This is the first study to demonstrate that Rho‐kinase inhibition can significantly improve age‐related impairments in haemodynamic and circulating ATP responses to physiological stimuli, which may have therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.