The complexes [Fe[HC(3,5-Me2pz)3]2](BF4)2 (1), [Fe[HC(pz)3]2](BF4)2 (2), and [Fe[PhC(pz)2(py)]2](BF4)2 (3) (pz = 1-pyrazolyl ring, py = pyridyl ring) have been synthesized by the reaction of the appropriate ligand with Fe(BF4)2.6H2O. Complex 1 is high-spin in the solid state and in solution at 298 K. In the solid phase, it undergoes a decrease in magnetic moment at lower temperatures, changing at ca. 206 K to a mixture of high-spin and low-spin forms, a spin-state mixture that does not change upon subsequent cooling to 5 K. Crystallographically, there is only one iron(II) site in the ambient-temperature solid-state structure, a structure that clearly shows the complex is high-spin. Mössbauer spectral studies show conclusively that the magnetic moment change observed at lower temperatures arises from the complex changing from a high-spin state at higher temperatures to a 50:50 mixture of high-spin and low-spin states at lower temperatures. Complexes 2 and 3 are low-spin in the solid phase at room temperature. Complex 2 in the solid phase gradually changes over to the high-spin state upon heating above 295 K and is completely high-spin at ca. 470 K. In solution, variable-temperature 1H NMR spectra of 2 show both high-spin and low-spin forms are present, with the percentage of the paramagnetic form increasing as the temperature increases. Complex 3 is low-spin at all temperatures studied in both the solid phase and solution. An X-ray absorption spectral study has been undertaken to investigate the electronic spin states of [Fe[HC(3,5-Me2pz)3]2](BF4)2 and [Fe[HC(pz)3]2](BF4)2. Crystallographic information: 2 is monoclinic, P2(1)/n, a = 10.1891(2) A, b = 7.6223(2) A, c = 17.2411(4) A, beta = 100.7733(12) degrees, Z = 2; 3 is triclinic, P1, a = 12.4769(2) A, b = 12.7449(2) A, c = 13.0215(2) A, alpha = 83.0105(8) degrees, beta = 84.5554(7) degrees, gamma = 62.5797(2) degrees, Z = 2.
Four new bis(m-phenylene)-32-crown-10-based cryptands with different third bridges were prepared. Their complexes with paraquat derivatives were studied by proton NMR spectroscopy, mass spectrometry, and X-ray analysis. It was found that these cryptands bind paraquat derivatives very strongly. Specifically, a diester cryptand with a pyridyl nitrogen atom located at a site occupied by either water or a PF(6) anion in analogous complexes exhibited the highest association constant K(a) = 5.0 x 10(6) M(-1) in acetone with paraquat, 9000 times greater than the crown ether system. X-ray structures of this and analogous complexes demonstrate that improved complexation with this host is a consequence of preorganization, adequate ring size for occupation by the guest, and the proper location of the pyridyl N-atom for binding to the beta-pyridinium hydrogens of the paraquat guests. This readily accessible cryptand is one of the most powerful hosts reported for paraquats.
The reaction of ZnCl(2) with tert-butylphosphonic acid and 3,5-dimethylpyrazole in the presence of triethylamine as a hydrogen chloride scavenger affords a trinuclear molecular zinc phosphonate [Zn(3)Cl(2)(3,5-Me(2)Pz)(4)(t-BuPO(3))(2)]. The structure of this compound contains a planar trizinc assembly containing two bicapping mu(3) [t-BuPO(3)](2-) ligands and terminal pyrazole and chloride ligands. In contrast an analogous reaction of ZnCl(2) with phenylphosphonic acid and 3,5-dimethylpyrazole affords a hexanuclear zinc phosphonate [Zn(6)Cl(4)(3,5-Me(2)PzH)(8)(PhPO(3))(4)]. The six zinc centers are arranged in a chairlike conformation. The four phosphonates in this complex also act as bridging tripodal mu(3) [RPO(3)](2-) ligands.
In spite of the major advantages that the liquisolid technology offers, particularly in tackling poor bioavailability of poorly water-soluble drugs ( i.e. , BCS Class II drugs), there are a few critical drawbacks. The inability of a high liquid load factor, poor flowability, poor compactibility, and an inability to produce a high dose dosage form of a reasonable size for swallowing are major hurdles, hampering this technology from being commercially feasible. An attempt was therefore made to overcome these drawbacks whilst maintaining the liquisolid inherent advantages. This resulted in the emerging next generation of oral dosage forms called the liqui-pellet. All formulations were incorporated into capsules as the final product. Solubility studies of naproxen were conducted in different liquid vehicles, namely polyethylene glycol 200, propylene glycol, Tween 80, Labrafil, Labrasol, and Kolliphor EL. The scanning electron microscopy studies indicated that the liquid vehicle tends to reduce the surface roughness of the pellet. X-ray powder diffraction (XRPD) indicated no significant differences in the crystalline structure or amorphous content between the physical mixture and the liqui-pellet formulation. This was due to the presence of a high concentration of amorphous Avicel in the formulation which overshadowed the crystalline structure of naproxen in the physical mixtures. Flowability and dissolution tests confirmed that this next-generation oral dosage form has excellent flowability, whilst maintaining the typical liquisolid enhanced drug release performance in comparison to its physical mixture counterpart. The liqui-pellet also had a high liquid load factor of 1, where ~ 29% of the total mass was the liquid vehicle. This shows that a high liquid load factor can be achieved in a liqui-pellet without compromising flowability. Overall, the results showed that the poor flowability of a liquisolid formulation could be overcomed with the liqui-pellet, which is believed to be a major advancement into the commercial feasibility of the liquisolid concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.