Episodic and spatial memories engage the hippocampus during acquisition but migrate to the cerebral cortex over time. We have recently proposed that the interplay between slow-wave (SWS) and rapid eye movement (REM) sleep propagates recent synaptic changes from the hippocampus to the cortex. To test this theory, we jointly assessed extracellular neuronal activity, local field potentials (LFP), and expression levels of plasticity-related immediate-early genes (IEG) arc and zif-268 in rats exposed to novel spatio-tactile experience. Post-experience firing rate increases were strongest in SWS and lasted much longer in the cortex (hours) than in the hippocampus (minutes). During REM sleep, firing rates showed strong temporal dependence across brain areas: cortical activation during experience predicted hippocampal activity in the first post-experience hour, while hippocampal activation during experience predicted cortical activity in the third post-experience hour. Four hours after experience, IEG expression was specifically upregulated during REM sleep in the cortex, but not in the hippocampus. Arc gene expression in the cortex was proportional to LFP amplitude in the spindle-range (10–14 Hz) but not to firing rates, as expected from signals more related to dendritic input than to somatic output. The results indicate that hippocampo-cortical activation during waking is followed by multiple waves of cortical plasticity as full sleep cycles recur. The absence of equivalent changes in the hippocampus may explain its mnemonic disengagement over time.
Sleep disturbances, including insufficient sleep duration and circadian misalignment, confer risk for cardiometabolic disease. Less is known about the association between the regularity of sleep/wake schedules and cardiometabolic risk. This study evaluated the external validity of a new metric, the Sleep Regularity Index (SRI), among older adults (n = 1978; mean age 68.7 ± 9.2), as well as relationships between the SRI and cardiometabolic risk using data from the Multi-Ethnic Study of Atherosclerosis (MESA). Results indicated that sleep irregularity was associated with delayed sleep timing, increased daytime sleep and sleepiness, and reduced light exposure, but was independent of sleep duration. Greater sleep irregularity was also correlated with 10-year risk of cardiovascular disease and greater obesity, hypertension, fasting glucose, hemoglobin A1C, and diabetes status. Finally, greater sleep irregularity was associated with increased perceived stress and depression, psychiatric factors integrally tied to cardiometabolic disease. These results suggest that the SRI is a useful measure of sleep regularity in older adults. Additionally, sleep irregularity may represent a target for early identification and prevention of cardiometabolic disease. Future studies may clarify the causal direction of these effects, mechanisms underlying links between sleep irregularity and cardiometabolic risk, and the utility of sleep interventions in reducing cardiometabolic risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.