ObjectiveSpinobulbar muscular atrophy (SBMA) is an X-linked adult-onset neuromuscular disorder that causes progressive weakness and androgen insensitivity in hemizygous males. This condition is reported to be extremely rare, but has higher prevalence in certain populations due to multiple founder effects. Anecdotal observations of a higher prevalence of SBMA in patients of Indigenous descent in Saskatchewan led us to perform this study, to estimate the disease prevalence, and to attempt to identify a founder effect.MethodsFor our prevalence estimation, we identified patients with confirmed SBMA diagnosis from the Saskatoon neuromuscular clinic database for comparison with population data available from Statistics Canada. For our haplotype analysis, participants with SBMA were recruited from 2 neuromuscular clinics, as well as 5 control participants. Clinical data were collected, as well as a DNA sample using saliva kits. We performed targeted quantification of DXS1194, DXS1111, DXS135, and DXS1125 microsatellite repeats and the AR GGC repeat to attempt to identify a disease haplotype and compare it with prior studies.ResultsWe estimate the prevalence of SBMA among persons of Indigenous descent in Saskatchewan as 14.7 per 100,000 population. Although we believe that this is an underestimate, this still appears to be the highest population prevalence for SBMA in the world. A total of 21 participants were recruited for the haplotype study, and we identified a unique haplotype that was shared among 13 participants with Indigenous ancestry. A second shared haplotype was identified in 2 participants, which may represent a second founder haplotype, but this would need to be confirmed with future studies.ConclusionsWe describe a very high prevalence of SBMA in western Canadians of Indigenous descent, which appears to predominantly be due to a founder effect. This necessitates further studies of SBMA in these populations to comprehensively ascertain the disease prevalence and allow appropriate allocation of resources to support individuals living with this chronic disease.
Pathogenic variants in MFN2 cause Charcot-Marie-Tooth disease (CMT) type 2A (CMT2A) and are the leading cause of the axonal subtypes of CMT. CMT2A is characterized by predominantly distal motor weakness and muscle atrophy, with highly variable severity and onset age. Notably, some MFN2 variants can also lead to other phenotypes such as optic atrophy, hearing loss and lipodystrophy. Despite the clear link between MFN2 and CMT2A, our mechanistic understanding of how dysfunction of the MFN2 protein causes human disease pathologies remains incomplete. This lack of understanding is due in part to the multiple cellular roles of MFN2. Though initially characterized for its role in mediating mitochondrial fusion, MFN2 also plays important roles in mediating interactions between mitochondria and other organelles, such as the endoplasmic reticulum and lipid droplets. Additionally, MFN2 is also important for mitochondrial transport, mitochondrial autophagy, and has even been implicated in lipid transfer. Though over 100 pathogenic MFN2 variants have been described to date, only a few have been characterized functionally, and even then, often only for one or two functions. Here, we describe a novel homozygous MFN2 variant, D414V, in a patient presenting with cerebellar ataxia, deafness, blindness, and diffuse cerebral and cerebellar atrophy. Characterization of patient fibroblasts reveals phenotypes consistent with impaired MFN2 functions and expands the phenotypic presentation of MFN2 variants to include cerebellar ataxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.