SUMMARYWe report the production of a monoclonal antibody (d1C4) by in vitro immunization that has immunoreactivity with a native chondroitin sulfate epitope in embryonic chick limb and heart. Murine lymphocytes were stimulated by direct exposure to unfixed, unsolubilized precartilage mesenchymal aggregates in high-density micromass culture derived from Stage 22-23 chick limb buds. Specificity of d1C4 reactivity was demonstrated by sensitivity of immunohistochemical staining to pretreatment with chondroitinase ABC or AC, preferential immunoreactivity with chondroitin-6-sulfate glycosaminoglycan (CS-C GAG) in ELISA, and competition of immunohistochemical staining with CS-C GAG. Immunohistochemical analysis of the expression of the d1C4 epitope revealed a striking localization of immunoreactivity in the extracellular matrix (ECM) of precartilage aggregates of chick limb mesenchyme in high-density micromass culture by 16 hr and the prechondrogenic limb core at Stage 23 in vivo. Immunoreactivity in both cultured limb mesenchyme and the embryonic limb continued through differentiation of prechondrogenic condensations into cartilage tissue. In the developing chick heart, d1C4 staining was found throughout the ECM of atrioventricular cushion tissue by Stage 25, but was localized to mesenchyme adjacent to the myocardium in the outflow tract cushions. There was an abrupt demarcation between d1C4-reactive intracardiac mesenchyme and unreactive extracardiac mesenchyme of the dorsal mesocardium in the Stage 22 embryo. This study demonstrates the efficacy of in vitro immunization of lymphocytes for the production of MAbs to native ECM constituents, such as CS-GAGs. Immunohistochemical data utilizing d1C4 suggest that CS-GAGs bearing this epitope may be important in early morphogenetic events leading to cartilage differentiation in the limb and valvuloseptal morphogenesis in the heart.
Endocardial cushion tissue is formed by an epithelial-mesenchymal transformation of endocardial cells, a process which results from an inductive interaction between the myocardium and endocardium within the atrioventricular (AV) and outflow tract (OT) regions of the heart. We report here that a protein previously found to be required for myocardially induced transformation of endocardial cells in vitro, ES/130, is highly expressed within the AV and OT regions not only by myocardial cells, but also by the endocardium and its mesenchymal progeny. Given these findings and others, we have tested the hypothesis that endocardial cushion tissue secretes factors which autoregulate its transformation to mesenchyme. Endocardial cushion tissue was cultured and its conditioned growth medium was harvested and applied to nontransformed endocardial cells maintained in the absence of the inductive myocardium. This treatment resulted in endocardial cell invasion into three-dimensional collagen gels plus increased expression of proteins associated with endocardial cell transformation in vivo. Whereas endocardial cushion tissue was found to express ES/130 protein in vivo and in vitro, minimal detection of ES/130 in its conditioned growth medium was observed in immunoblots. Attempts to inhibit the mesenchyme-promoting activity of the conditioned medium with ES/130 antisense were unsuccessful. However, strong intracellular ES/130 expression was detected in endocardial cells, and this expression correlated with the ability of endocardial cells to transform. For example, the minority of endocardial cultures that failed to transform in response to conditioned medium treatment also failed to undergo increased expression of ES/130. These observations are interpreted to suggest that (i) endocardial cushion tissue secretes factors that promote its transformation to mesenchyme, and (ii) while endocardial cushion tissue appears to signal through secretion of factors other than or in addition to ES/130, intracellular ES/130 expression nevertheless may be a target endocardial cell response required for endocardial cell transformation.
This study infers that the advent of color flow Doppler significantly enhanced the diagnosis of DCRV in our pediatric patients and led to a perceived rise in incidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.