BackgroundMaxillary protraction with the novel N2 mini-implant- and micro-implant-assisted rapid palatal expander (MARPE) can potentially provide significant skeletal effects without surgery, even in older patients where conventional facemask therapy has limited skeletal effects. However, the skeletal effects of altering the location and direction of force from mini-implant-assisted maxillary protraction have not been extensively analyzed. In this study, the application of the novel N2 mini-implant as an orthopedic anchorage device is explored in its ability to treat patients with class III malocclusions.MethodsA 3D cranial mesh model with associated sutures was developed from CT images and Mimics modeling software. Utilizing ANSYS simulation software, protraction forces were applied at different locations and directions to simulate conventional facemask therapy and seven maxillary protraction protocols utilizing the novel N2 mini-implant. Stress distribution and displacement were analyzed. Video animations and superimpositions were created.ResultsBy changing the vector of force and location of N2 mini-implant, the maxilla was displaced differentially. Varying degrees of forward, downward, and rotational movements were observed in each case. For brachyfacial patients, anterior micro-implant-supported protraction at −45° or intermaxillary class III elastics at −45° are recommended. For dolicofacial patients, either anterior micro-implants at −15° or an intermaxillary spring at +30° is recommended. For mesofacial patients with favorable vertical maxillary position, palatal micro-implants at −30° are recommended; anterior micro-implants at −30° are preferred for shallow bites. For patients with a severe mid-facial deficiency, intermaxillary class III elastics at −30° are most effective in promoting anterior growth of the maxilla.ConclusionsBy varying the location of N2 mini-implants and vector of class III mechanics, clinicians can differentially alter the magnitude of forward, downward, and rotational movement of the maxilla. As a result, treatment protocol can be customized for each unique class III patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.