Micro/nanolayer coextrusion was used to fabricate polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) layered films with significantly reduced dielectric losses while maintaining high energy density. The high-field polarization hysteresis was characterized for layered films as a function of PVDF layer thickness (6000 to 10 nm) and composition (10 to 70 vol % PVDF), and was found to decrease with decreasing layer thickness and PVDF content. To gain a mechanistic understanding of the layer thickness (or nanoconfinement) effect, wide-angle X-ray diffraction, polarized Fourier transform infrared spectroscopy, and broadband dielectric spectroscopy were employed. The results revealed that charge migration, instead of dipole flipping, was responsible for the hysteresis in multilayered films. The absence of PVDF dipoleflipping was attributed to the nonuniform electric field distribution in the layered structure, where the field in PVDF layers were calculated to be significantly lower than that in PC layers due to large contrast in dielectric constant (∼3 for PC versus ∼12 for PVDF). The charges were likely to be impurity ions in the form of catalyst residue or surfactants from suspension polymerization. The characteristics of the dielectric spectroscopy relaxation indicated that ions mostly existed in the PVDF layers, and PC/PVDF interfaces prevented them from entering adjacent layers. Therefore, as the layer thickness decreases to nanometer scales, the amount of ion movement, dielectric loss, and hysteresis were decreased. This study provides clear evidence of the nanoconfinement effect in multilayered films, which advantageously decreases the hysteresis loss.
Structural and dielectric properties of ferroelectric poly(vinylidene fluoride-trifluoroethylene) thin films with different bottom electrodes Forced assembly microlayer coextrusion was used to produce polycarbonate/poly(vinylidene fluoride-co-hexafluoropropylene) [PC/P(VDF-HFP)] layered films for dielectric capacitor applications. Low field dielectric spectroscopy was systematically carried out on the layered films and controls. A low frequency relaxation was found that shifted to higher frequency and decreased in intensity as the P(VDF-HFP) layer thickness was reduced. The interfacial Maxwell-Wagner polarization, being layer thickness independent, could not account for this reduced low frequency relaxation behavior as the layer thickness decreased. Charge diffusion models by Sawada and Coelho, however, satisfactorily predicted the observed layer thickness effect, indicating that the migration of impurity ions in the P(VDF-HFP) layer caused the low frequency relaxation. A new, convenient fitting procedure was developed for the Sawada model yielding an ion concentration and diffusion coefficient of 2 Â 10 21 ions/m 3 and 2 Â 10 À13 m 2 /s, respectively, for films with layer thicknesses of 430 to 50 nm. Thicker layers of 7000 nm had significantly different diffusion parameters, which were attributed to differing crystal orientations in the P(VDF-HFP) layers. These findings show that low ion concentrations, whether from catalyst residue and processing or intentionally added, significantly affect the dielectric properties and can play a vital role in many applications (i.e., LCD displays, solar cells, light-emitting electrochemical cells, capacitors).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.