Most studies involving spontaneous fluctuations in the BOLD signal extract connectivity patterns that show relationships between brain areas that are maintained over the length of the scanning session. In this study, however, we examine the spatiotemporal dynamics of the BOLD fluctuations to identify common patterns of propagation within a scan. A novel pattern finding algorithm was developed for detecting repeated spatiotemporal patterns in BOLD fMRI data. The algorithm was applied to high temporal resolution T2*-weighted multislice images obtained from rats and humans in the absence of any task or stimulation. In rats, the primary pattern consisted of waves of high signal intensity, propagating in a lateral to medial direction across the cortex, replicating our previous findings (Majeed et al., 2009a). These waves were observed primarily in sensorimotor cortex, but also extended to visual and parietal association areas. A secondary pattern, confined to subcortical regions consisted of an initial increase and subsequent decrease in signal intensity in the caudate-putamen. In humans, the most common spatiotemporal pattern consisted of an alteration between activation of areas comprising the "default-mode" (e.g., posterior cingulate and anterior medial prefrontal cortices) and the "task-positive" (e.g., superior parietal and premotor cortices) networks. Signal propagation from focal starting points was also observed. The pattern finding algorithm was shown to be reasonably insensitive to the variation in user-defined parameters, and the results were consistent within and between subjects. This novel approach for probing the spontaneous network activity of the brain has implications for the interpretation of conventional functional connectivity studies, and may increase the amount of information that can be obtained from neuroimaging data.
The slow fluctuations of the blood-oxygenation-level dependent (BOLD) signal in resting-state fMRI are widely utilized as a surrogate marker of ongoing neural activity. Spontaneous neural activity includes a broad range of frequencies, from infraslow (< 0.5 Hz) fluctuations to fast action potentials. Recent studies have demonstrated a correlative relationship between the BOLD fluctuations and power modulations of the local field potential (LFP), particularly in the gamma band. However, the relationship between the BOLD signal and the infraslow components of the LFP, which are directly comparable in frequency to the BOLD fluctuations, has not been directly investigated. Here we report a first examination of the temporal relation between the resting-state BOLD signal and infraslow LFPs using simultaneous fMRI and full-band LFP recording in rat. The spontaneous BOLD signal at the recording sites exhibited significant localized correlation with the infraslow LFP signals as well as with the slow power modulations of higher-frequency LFPs (1-100 Hz) at a delay comparable to the hemodynamic response time under anesthesia. Infraslow electrical activity has been postulated to play a role in attentional processes, and the findings reported here suggest that infraslow LFP coordination may share a mechanism with the large-scale BOLD-based networks previously implicated in task performance, providing new insight into the mechanisms contributing to the resting state fMRI signal.
A better understanding of how behavioral performance emerges from interacting brain systems may come from analysis of functional networks using functional magnetic resonance imaging. Recent studies comparing such networks with human behavior have begun to identify these relationships, but few have used a time scale small enough to relate their findings to variation within a single individual's behavior. In the present experiment we examined the relationship between a psychomotor vigilance task and the interacting default mode and task positive networks. Two time-localized comparative metrics were calculated: difference between the two networks' signals at various time points around each instance of the stimulus (peristimulus times) and correlation within a 12.3-s window centered at each peristimulus time. Correlation between networks was also calculated within entire resting-state functional imaging runs from the same individuals. These metrics were compared with response speed on both an intraindividual and an interindividual basis. In most cases, a greater difference or more anticorrelation between networks was significantly related to faster performance. While interindividual analysis showed this result generally, using intraindividual analysis it was isolated to peristimulus times 4 to 8 s before the detected target. Within that peristimulus time span, the effect was stronger for individuals who tended to have faster response times. These results suggest that the relationship between functional networks and behavior can be better understood by using shorter time windows and also by considering both intraindividual and interindividual variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.