Abstract. We had previously introduced Learn ++ , inspired in part by the ensemble based AdaBoost algorithm, for incrementally learning from new data, including new concept classes, without forgetting what had been previously learned. In this effort, we compare the incremental learning performance of Learn ++ and AdaBoost under several combination schemes, including their native, weighted majority voting. We show on several databases that changing AdaBoost's distribution update rule from hypothesis based update to ensemble based update allows significantly more efficient incremental learning ability, regardless of the combination rule used to combine the classifiers.
Abstract-A blind approach for estimating the signal to noise ratio (SNR) of a speech signal corrupted by additive noise is proposed. The method is based on a pattern recognition paradigm using various linear predictive based features, a neural network classifier and estimation combination. Blind SNR estimation is very useful in speaker identification systems in which a confidence metric is determined along with the speaker identity. The confidence metric is partially based on the mismatch between the training and testing conditions of the speaker identification system and SNR estimation is very important in evaluating the degree of this mismatch. The aim is to correctly estimate SNR values from 0 to 30 dB, a range that is both practical and crucial for speaker identification systems. Speech corrupted by additive white Gaussian noise, pink noise and two types of bandpass channel noise are investigated. The best individual feature is the vector of line spectral frequencies. Combination of the estimates of 3 features lowers the estimation error to an average of 3.69 dB for the four types of noise.
A blind approach for estimating the signal to noise ratio (SNR) of a speech signal corrupted by additive noise is proposed. The method is based on a pattern recognition paradigm using various linear predictive based features, a vector quantizer classifier and estimation combination. Blind SNR estimation is very useful in speaker identification systems in which a confidence metric is determined along with the speaker identity. The confidence metric is partially based on the mismatch between the training and testing conditions of the speaker identification system and SNR estimation is very important in evaluating the degree of this mismatch. The aim is to correctly estimate SNR values from 0 to 30 dB, a range that is both practical and crucial for speaker identification systems. Additive white Gaussian noise and pink noise are investigated. The best feature for both white and pink noise is the vector of reflection coefficients which achieves an average SNR estimation error of 1.6 dB and 1.85 dB for white and pink noise respectively. Combining the estimates of 4 features lowers the error for white noise to 1.46 dB and for pink noise to 1.69 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.