IMPORTANCE Alteration in lung microbes is associated with disease progression in idiopathic pulmonary fibrosis. OBJECTIVE To assess the effect of antimicrobial therapy on clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS Pragmatic, randomized, unblinded clinical trial conducted across 35 US sites. A total of 513 patients older than 40 years were randomized from August 2017 to June 2019 (final follow-up was January 2020).INTERVENTIONS Patients were randomized in a 1:1 allocation ratio to receive antimicrobials (n = 254) or usual care alone (n = 259). Antimicrobials included co-trimoxazole (trimethoprim 160 mg/sulfamethoxazole 800 mg twice daily plus folic acid 5 mg daily, n = 128) or doxycycline (100 mg once daily if body weight <50 kg or 100 mg twice daily if Ն50 kg, n = 126). No placebo was administered in the usual care alone group. MAIN OUTCOMES AND MEASURESThe primary end point was time to first nonelective respiratory hospitalization or all-cause mortality. RESULTS Among the 513 patients who were randomized (mean age, 71 years; 23.6% women), all (100%) were included in the analysis. The study was terminated for futility on December 18, 2019. After a mean follow-up time of 13.1 months (median, 12.7 months), a total of 108 primary end point events occurred: 52 events (20.4 events per 100 patient-years [95% CI, 14.8-25.9]) in the usual care plus antimicrobial therapy group and 56 events (18.4 events per 100 patient-years [95% CI, 13.2-23.6]) in the usual care group, with no significant difference between groups (adjusted HR, 1.04 [95% CI, 0.71-1.53; P = .83]. There was no statistically significant interaction between the effect of the prespecified antimicrobial agent (co-trimoxazole vs doxycycline) on the primary end point (adjusted HR, 1.15 [95% CI 0.68-1.95] in the co-trimoxazole group vs 0.82 [95% CI, 0.46-1.47] in the doxycycline group; P = .66). Serious adverse events occurring at 5% or greater among those treated with usual care plus antimicrobials vs usual care alone included respiratory events (16.5% vs 10.0%) and infections (2.8% vs 6.6%); adverse events of special interest included diarrhea (10.2% vs 3.1%) and rash (6.7% vs 0%).CONCLUSIONS AND RELEVANCE Among adults with idiopathic pulmonary fibrosis, the addition of co-trimoxazole or doxycycline to usual care, compared with usual care alone, did not significantly improve time to nonelective respiratory hospitalization or death. These findings do not support treatment with these antibiotics for the underlying disease.
Background We tested the hypotheses that: 1) early exposure to increasing episodes of clinically relevant intermittent hypoxia (IH) is detrimental to the developing kidneys; and 2) there is a critical number of daily IH episodes which will result in irreparable renal damage that may involve angiotensin (Ang) II and endothelin (ET)-1. Methods At birth (P0), neonatal rat pups were exposed to brief IH episodes from the first day of life (P0) to P7 or from P0-P14. Pups were either euthanized immediately or placed in room air (RA) until P21. RA littermates served as controls. Kidneys were harvested at P7, P14, and P21 for histopathology; angiotensin converting enzyme (ACE), ACE-2, ET-1, big ET-1, and malondialdehyde (MDA) levels; immunoreactivity of ACE, ACE-2, ET-1, ET-2, ET receptors (ETAR, ETBR), and hypoxia inducible factor (HIF)1α; and apoptosis (TUNEL stain). Results Histopathology showed increased renal damage with 8–12 IH episodes/day, and was associated with Ang II, ACE, HIF1α, and apoptosis. ACE-2 was not expressed at P7, and minimally increased at P14. However, a robust ACE-2 response was seen during recovery with maximum levels noted in the groups recovering from 8 IH episodes/day. ET-1, big ET-1, ETAR, ETBR, and MDA increased with increasing levels of neonatal IH. Conclusions Chronic neonatal IH causes severe damage to the developing kidney with associated elevations in vasoconstrictors, suggesting hypertension, particularly with 8 neonatal IH episodes. ACE-2 is not activated in early postnatal life, and this may contribute to IH-induced vasoconstriction. Therapeutic targeting of ACE and ET-1 may help decrease the risk for kidney injury in the developing neonate to prevent and/or treat neonatal acute kidney injury and/or chronic kidney disease.
Objective: Extremely preterm infants experience frequent intermittent hypoxia (IH) episodes during oxygen therapy which causes significant damage to the lungs and curtails important signaling pathways that regulate normal lung alveolarization and microvascular maturation. We tested the hypothesis that early supplementation with fish oil and/or antioxidants in rats exposed to neonatal IH improves expression of lung biomarkers of alveolarization and microvascular maturation, and reduces IH-induced lung injury.Study Design/Methods: From birth (P0) to P14, rat pups were exposed to room air (RA) or neonatal IH during which they received daily oral supplementation with either: (1) olive oil (OO) (control); (2) Coenzyme Q10 (CoQ10) in OO; (3) fish oil; (4) glutathione nanoparticles (nGSH); or (5) fish oil +CoQ10. At P14 pups were placed in RA until P21 with no further treatment. RA controls were similarly treated. Lung growth and alveolarization, histopathology, apoptosis, oxidative stress and biomarkers of alveolarization and microvascular maturation were determined.Results: Neonatal IH was associated with reduced lung weights and severe histopathological outcomes. These effects were curtailed with fish oil and nGSH. nGSH was also protective against apoptosis, while CoQ10 prevented IH-induced ROS production. Of all treatments, nGSH and CoQ10 + fish oil-induced vascular endothelial growth factor 165 and CD31 (Platelet endothelial cell adhesion molecule-1), which are associated with angiogenesis. CoQ10 + fish oil improved alveolarization in RA and IH despite evidence of hemorrhage. Conclusions:The benefits of nGSH and CoQ10 + fish oil suggest an antioxidant effect which may be required to curtail IH-induced lung injury. Further clinical assessment of the effectiveness of nGSH is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.