Deregulation of the phosphatidylinositol 3-kinase (PI3K) pathway either through loss of PTEN or mutation of the catalytic subunit A of PI3K (PIK3CA) occurs frequently in human cancer. We identified PIK3CA mutations in 26% of 342 human breast tumor samples and cell lines at about equal frequency in tumor stages I to IV. To investigate the relationship between PTEN and PIK3CA, we generated a cohort of tumors that had lost PTEN expression and compared it with a matched control set that had retained PTEN. A highly significant association between PIK3CA mutations and retention of PTEN protein expression was observed. In addition, PIK3CA mutations were associated with expression of estrogen and progesterone receptors (ER/PR), lymph node metastasis, and ERBB2 overexpression. The fact that PIK3CA mutations and PTEN loss are nearly mutually exclusive implies that deregulated phosphatidylinositol-3,4,5-triphosphate (PIP 3 ) is critical for tumorigenesis in a significant fraction of breast cancers and that loss of PIP 3 homeostasis by abrogation of either PIK3CA or PTEN relieves selective pressure for targeting of the other gene. The correlation of PIK3CA mutation to ER/PR-positive tumors and PTEN loss to ER/PR-negative tumors argues for disparate branches of tumor evolution. Furthermore, the association between ERBB2 overexpression and PIK3CA mutation implies that more than one input activating the PI3K/AKT pathway may be required to overcome intact PTEN. Thus, mutation of PIK3CA is frequent, occurs early in carcinoma development, and has prognostic and therapeutic implications. (Cancer Res 2005; 65(7): 2554-9)
Pathway-specific therapy is the future of cancer management. The oncogenic phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in solid tumors; however, currently, no reliable test for PI3K pathway activation exists for human tumors. Taking advantage of the observation that loss of PTEN, the negative regulator of PI3K, results in robust activation of this pathway, we developed and validated a microarray gene expression signature for immunohistochemistry (IHC)-detectable PTEN loss in breast cancer (BC). The most significant signature gene was PTEN itself, indicating that PTEN mRNA levels are the primary determinant of PTEN protein levels in BC. Some PTEN IHC-positive BCs exhibited the signature of PTEN loss, which was associated to moderately reduced PTEN mRNA levels cooperating with specific types of PIK3CA mutations and/or amplification of HER2. This demonstrates that the signature is more sensitive than PTEN IHC for identifying tumors with pathway activation. In independent data sets of breast, prostate, and bladder carcinoma, prediction of pathway activity by the signature correlated significantly to poor patient outcome. Stathmin, encoded by the signature gene STMN1, was an accurate IHC marker of the signature and had prognostic significance in BC. Stathmin was also pathway-pharmacodynamic in vitro and in vivo. Thus, the signature or its components such as stathmin may be clinically useful tests for stratification of patients for anti-PI3K pathway therapy and monitoring therapeutic efficacy. This study indicates that aberrant PI3K pathway signaling is strongly associated with metastasis and poor survival across carcinoma types, highlighting the enormous potential impact on patient survival that pathway inhibition could achieve.breast cancer ͉ metastasis ͉ stathmin ͉ microarray
Lesions of ERBB2, PTEN, and PIK3CA activate the phosphatidylinositol 3-kinase (PI3K) pathway during cancer development by increasing levels of phosphatidylinositol-3,4,5-triphosphate (PIP 3 ). 3-Phosphoinositide-dependent kinase 1 (PDK1) is the first node of the PI3K signal output and is required for activation of AKT. PIP 3 recruits PDK1 and AKT to the cell membrane through interactions with their pleckstrin homology domains, allowing PDK1 to activate AKT by phosphorylating it at residue threonine-308. We show that total PDK1 protein and mRNA were overexpressed in a majority of human breast cancers and that 21% of tumors had five or more copies of the gene encoding PDK1, PDPK1. We found that increased PDPK1 copy number was associated with upstream pathway lesions (ERBB2 amplification, PTEN loss, or PIK3CA mutation), as well as patient survival. Examination of an independent set of breast cancers and tumor cell lines derived from multiple forms of human cancers also found increased PDK1 protein levels associated with such upstream pathway lesions. In human mammary cells, PDK1 enhanced the ability of upstream lesions to signal to AKT, stimulate cell growth and migration, and rendered cells more resistant to PDK1 and PI3K inhibition. After orthotopic transplantation, PDK1 overexpression was not oncogenic but dramatically enhanced the ability of ERBB2 to form tumors. Our studies argue that PDK1 overexpression and increased PDPK1 copy number are common occurrences in cancer that potentiate the oncogenic effect of upstream lesions on the PI3K pathway. Therefore, we conclude that alteration of PDK1 is a critical component of oncogenic PI3K signaling in breast cancer. [Cancer Res 2009;69(15):6299-306]
BackgroundThe basal-like breast cancer (BLBC) subtype is characterized by positive staining for basal mammary epithelial cytokeratin markers, lack of hormone receptor and HER2 expression, and poor prognosis with currently no approved molecularly-targeted therapies. The oncogenic signaling pathways driving basal-like tumorigenesis are not fully elucidated.MethodsOne hundred sixteen unselected breast tumors were subjected to integrated analysis of phosphoinositide 3-kinase (PI3K) pathway related molecular aberrations by immunohistochemistry, mutation analysis, and gene expression profiling. Incidence and relationships between molecular biomarkers were characterized. Findings for select biomarkers were validated in an independent series. Synergistic cell killing in vitro and in vivo tumor therapy was investigated in breast cancer cell lines and mouse xenograft models, respectively.ResultsSixty-four % of cases had an oncogenic alteration to PIK3CA, PTEN, or INPP4B; when including upstream kinases HER2 and EGFR, 75 % of cases had one or more aberration including 97 % of estrogen receptor (ER)-negative tumors. PTEN-loss was significantly associated to stathmin and EGFR overexpression, positivity for the BLBC markers cytokeratin 5/14, and the BLBC molecular subtype by gene expression profiling, informing a potential therapeutic combination targeting these pathways in BLBC. Combination treatment of BLBC cell lines with the EGFR-inhibitor gefitinib plus the PI3K pathway inhibitor LY294002 was synergistic, and correspondingly, in an in vivo BLBC xenograft mouse model, gefitinib plus PI3K-inhibitor PWT-458 was more effective than either monotherapy and caused tumor regression.ConclusionsOur study emphasizes the importance of PI3K/PTEN pathway activity in ER-negative and basal-like breast cancer and supports the future clinical evaluation of combining EGFR and PI3K pathway inhibitors for the treatment of BLBC.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-016-2609-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.