The yeast mitochondrial Oxa1 protein is a member of the conserved Oxa1/YidC/Alb3 protein family involved in the membrane insertion of proteins. Oxa1 mediates the insertion of proteins (nuclearly and mitochondrially encoded) into the inner membrane. The mitochondrially encoded substrates interact directly with Oxa1 during their synthesis as nascent chains and in a manner that is supported by the associated ribosome. We have investigated if the Oxa1 complex interacts with the mitochondrial ribosome. Evidence to support a physical association between Oxa1 and the large ribosomal subunit is presented. Our data indicate that the matrix‐exposed C‐terminal region of Oxa1 plays an important role supporting the ribosomal–Oxa1 interaction. Truncation of this C‐terminal segment compromises the ability of Oxa1 to support insertion of substrate proteins into the inner membrane. Oxa1 can be cross‐linked to Mrp20, a component of the large ribosomal subunit. Mrp20 is homologous to L23, a subunit located next to the peptide exit tunnel of the ribosome. We propose that the interaction of Oxa1 with the ribosome serves to enhance a coupling of translation and membrane insertion events.
BackgroundWe designed an innovative porcine model of ischemia‐induced arrest to determine dynamic arrhythmia substrates during focal infarct, global ischemia from ventricular tachycardia or fibrillation (VT/VF) and then reperfusion to determine the effect of therapeutic hypothermia (TH) on dynamic arrhythmia substrates and resuscitation outcomes.Methods and ResultsAnesthetized adult pigs underwent thoracotomy and regional plunge electrode placement in the left ventricle. Subjects were then maintained at either control (CT; 37°C, n=9) or TH (33°C, n=8). The left anterior descending artery (LAD) was occluded and ventricular fibrillation occurred spontaneously or was induced after 30 minutes. Advanced cardiac life support was started after 8 minutes, and LAD reperfusion occurred 60 minutes after occlusion. Incidences of VF/VT and survival were compared with ventricular ectopy, cardiac alternans, global dispersion of repolarization during LAD occlusion, and LAD reperfusion. There was no difference in incidence of VT/VF between groups during LAD occlusion (44% in CT versus 50% in TH;
P=1s). During LAD occlusion, ectopy was increased in CT and suppressed in TH (33±11 ventricular ectopic beats/min versus 4±6 ventricular ectopic beats/min; P=0.009). Global dispersion of repolarization and cardiac alternans were similar between groups. During LAD reperfusion, TH doubled the incidence of cardiac alternans compared with CT, with a marked increase in VF/VT (100% in TH versus 17% in CT; P=0.004). Ectopy and global dispersion of repolarization were similar between groups during LAD reperfusion.Conclusions
TH alters arrhythmia substrates in a porcine translational model of resuscitation from ischemic cardiac arrest during the complex phases of resuscitation. TH worsens cardiac alternans, which was associated with an increase in spontaneous VT/VF during reperfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.