There is a concerted effort by a number of public and private groups to identify a large set of human single-nucleotide polymorphisms (SNPs). As of March 2001, 2.84 million SNPs have been deposited in the public database, dbSNP, at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/SNP/). The 2.84 million SNPs can be grouped into 1.65 million non-redundant SNPs. As part of the International SNP Map Working Group, we recently published a high-density SNP map of the human genome consisting of 1.42 million SNPs (ref. 3). In addition, numerous SNPs are maintained in proprietary databases. Our survey of more than 1,200 SNPs indicates that more than 80% of TSC and Washington University candidate SNPs are polymorphic and that approximately 50% of the candidate SNPs from these two sources are common SNPs (with minor allele frequency of > or =20%) in any given population.
Here we report a large, extensively characterized set of single-nucleotide polymorphisms (SNPs) covering the human genome. We determined the allele frequencies of 55,018 SNPs in African Americans, Asians (Japanese-Chinese), and European Americans as part of The SNP Consortium's Allele Frequency Project. A subset of 8333 SNPs was also characterized in Koreans. Because these SNPs were ascertained in the same way, the data set is particularly useful for modeling. Our results document that much genetic variation is shared among populations. For autosomes, some 44% of these SNPs have a minor allele frequency ≥10% in each population, and the average allele frequency differences between populations with different continental origins are less than 19%. However, the *Corresponding authors. Jong-Eun Lee is to be contacted at fax: +82 2 364 4778. Michael T. Boyce-Jacino, fax: +1 609 818 0054. PuiYan Kwok,
With NR1I2 playing such a large role in the regulation of genes involved in drug metabolism and transport, genetic variation contributing to altered NR1I2 function may have an important clinical impact.
Candidate gene pharmacogenetic studies offer a strategy for the rapid assessment of putative predictive markers. As a first step toward studying the pharmacogenetics of cancer chemotherapy, 51 candidate genes from the pathways of antineoplastic agents were resequenced to identify common genetic polymorphisms that might alter therapeutic response or toxicity. Forty DNA samples were screened from each of three population groups: African-Americans, Asian-Americans and European-Americans. Nearly 378 kb of genomic sequence was obtained from each sample. Nine hundred and four variants were identified, including 139 coding single nucleotide polymorphisms (cSNPs). Three hundred and fifty-six (40%) polymorphisms were common to all three populations and 366 (41%) were population specific. Three hundred and forty-six (38%) variants were novel polymorphisms that were not present in the three public databases that were examined. One hundred and eleven (35%) of the 319 non-synonymous cSNPs that were identified by either resequencing or database mining were predicted by PolyPhen to be either possibly or probably damaging. For the non-synonymous cSNPs identified by resequencing, both the number of cSNPs found and the maximum estimated allele frequency decreased with increasing predicted severity. These results provide experimental validation and estimated allele frequencies for polymorphisms in three common ethnic groups and facilitate applied pharmacogenetic studies of anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.