The subject of diffraction of waves by sharp boundaries has been studied intensively for well over a century, initiated by groundbreaking mathematicians and physicists including Sommerfeld, Macdonald and Poincaré. The significance of such canonical diffraction models, and their analytical solutions, was recognised much more broadly thanks to Keller, who introduced a geometrical theory of diffraction (GTD) in the middle of the last century, and other important mathematicians such as Fock and Babich. This has led to a very wide variety of approaches to be developed in order to tackle such two and three dimensional diffraction problems, with the purpose of obtaining elegant and compact analytic solutions capable of easy numerical evaluation.The purpose of this review article is to showcase the disparate mathematical techniques that have been proposed. For ease of exposition, mathematical brevity, and for the broadest interest to the reader, all approaches are aimed at one canonical model, namely diffraction of a monochromatic scalar plane wave by a two-dimensional wedge with perfect Dirichlet or Neumann boundaries. The first three approaches offered are those most commonly used today in diffraction theory, although not necessarily in the context of wedge diffraction. These are the Sommerfeld-Malyuzhinets method, the Wiener-Hopf technique, and the Kontorovich-Lebedev transform approach. Then follows three less well-known and somewhat novel methods, which would be of interest even to specialists in the field, namely the embedding method, a random walk approach, and the technique of functionally-invariant solutions.Having offered the exact solution of this problem in a variety of forms, a numerical comparison between the exact solution and several powerful approximations such as GTD is performed and critically assessed.
Analytical methods are fundamental in studying acoustics problems. One of the important tools is the Wiener-Hopf method, which can be used to solve many canonical problems with sharp transitions in boundary conditions on a plane/plate. However, there are some strict limitations to its use, usually the boundary conditions need to be imposed on parallel lines (after a suitable mapping). Such mappings exist for wedges with continuous boundaries, but for discrete boundaries, they have not yet been constructed. In our previous article, we have overcome this limitation and studied the diffraction of acoustic waves by a wedge consisting of point scatterers. Here, the problem is generalised to an arbitrary number of periodic semi-infinite arrays with arbitrary orientations. This is done by constructing several coupled systems of equations (one for every semi-infinite array) which are treated independently. The derived systems of equations are solved using the discrete Wiener-Hopf technique and the resulting matrix equation is inverted using elementary matrix arithmetic. Of course, numerically this matrix needs to be truncated, but we are able to do so such that thousands of scatterers on every array are included in the numerical results. Comparisons with other numerical methods are considered, and their strengths/weaknesses are highlighted.
The important open canonical problem of wave diffraction by a penetrable wedge is considered in the high-contrast limit. Mathematically, this means that the contrast parameter, the ratio of a specific material property of the host and the wedge scatterer, is assumed small. The relevant material property depends on the physical context and is different for acoustic and electromagnetic waves for example. Based on this assumption, a new asymptotic iterative scheme is constructed. The solution to the penetrable wedge is written in terms of infinitely many solutions to (possibly inhomogeneous) impenetrable wedge problems. Each impenetrable problem is solved using a combination of the Sommerfeld–Malyuzhinets and Wiener–Hopf techniques. The resulting approximated solution to the penetrable wedge involves a large number of nested complex integrals and is hence difficult to evaluate numerically. In order to address this issue, a subtle method (combining asymptotics, interpolation and complex analysis) is developed and implemented, leading to a fast and efficient numerical evaluation. This asymptotic scheme is shown to have excellent convergent properties and leads to a clear improvement on extant approaches.
This article provides an overview of resonance phenomena in wave scattering by infinite and semi-infinite periodic arrays of small cylindrical scatterers, in the context of Foldy’s approximation. It briefly summarizes well-known results from the literature. Moreover, for infinite arrays, the asymptotics of the resonant wave amplitudes in the double resonance case is investigated. This leads to the rediscovery of non-uniqueness of the solution in this context, and to a discussion of the validity of Foldy’s approximation for double resonance. For semi-infinite arrays, a new and improved uniform far-field approximation is derived, uniqueness issues are considered and the validity of Foldy’s approximation is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.