The availability and utility of genome-scale metabolic reconstructions have exploded since the first genome-scale reconstruction was published a decade ago. Reconstructions have now been built for a wide variety of organisms, and have been used toward five major ends: (1) contextualization of high-throughput data, (2) guidance of metabolic engineering, (3) directing hypothesis-driven discovery, (4) interrogation of multi-species relationships, and (5) network property discovery. In this review, we examine the many uses and future directions of genome-scale metabolic reconstructions, and we highlight trends and opportunities in the field that will make the greatest impact on many fields of biology. Molecular Systems Biology 5: 320; published online 3 November 2009; doi:10.1038/msb.2009 Subject Categories: metabolic and regulatory networks; simulation and data analysis
A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA) enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures, high-throughput phenotyping data, 13C-measurement of internal flux distributions, and specifically generated knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The solidly validated model yields valuable insights into genotype–phenotype relationships and provides a sound framework to explore this versatile bacterium and to capitalize on its vast biotechnological potential.
Pseudomonas aeruginosa is a major life-threatening opportunistic pathogen that commonly infects immunocompromised patients. This bacterium owes its success as a pathogen largely to its metabolic versatility and flexibility. A thorough understanding of P. aeruginosa's metabolism is thus pivotal for the design of effective intervention strategies. Here we aim to provide, through systems analysis, a basis for the characterization of the genome-scale properties of this pathogen's versatile metabolic network. To this end, we reconstructed a genome-scale metabolic network of Pseudomonas aeruginosa PAO1. This reconstruction accounts for 1,056 genes (19% of the genome), 1,030 proteins, and 883 reactions. Flux balance analysis was used to identify key features of P. aeruginosa metabolism, such as growth yield, under defined conditions and with defined knowledge gaps within the network. BIOLOG substrate oxidation data were used in model expansion, and a genome-scale transposon knockout set was compared against in silico knockout predictions to validate the model. Ultimately, this genome-scale model provides a basic modeling framework with which to explore the metabolism of P. aeruginosa in the context of its environmental and genetic constraints, thereby contributing to a more thorough understanding of the genotype-phenotype relationships in this resourceful and dangerous pathogen.With sequenced genomes now routinely being made available to the public, detailed annotations and various publicly available genomic resources have enabled the formation of genome-scale models of metabolism for a wide variety of organisms (12,21,26,42,63,65). A wealth of data from wellcontrolled experiments, coupled with advancements in methods for computational network analysis, have allowed these models to aid interrogation of metabolic behavior. In addition, an iterative process to model development-cycles of in silico model predictions, experimental (i.e., wet lab) validation, and subsequent model refinement-has enabled the development of methods that have contributed to biological discovery, such as in determination of likely drug targets in Mycobacterium tuberculosis (3,26), metabolic engineering of cells for production of valuable compounds (5, 32, 34), and development of novel frameworks for contextualizing high-throughput "-omics" data sets (15,24,64).Pseudomonas aeruginosa is a ubiquitous gram-negative bacterium that is capable of surviving in a broad range of natural
In the past decade, over 50 genome-scale metabolic reconstructions have been built for a variety of single- and multi- cellular organisms. These reconstructions have enabled a host of computational methods to be leveraged for systems-analysis of metabolism, leading to greater understanding of observed phenotypes. These methods have been sparsely applied to comparisons between multiple organisms, however, due mainly to the existence of differences between reconstructions that are inherited from the respective reconstruction processes of the organisms to be compared. To circumvent this obstacle, we developed a novel process, termed metabolic network reconciliation, whereby non-biological differences are removed from genome-scale reconstructions while keeping the reconstructions as true as possible to the underlying biological data on which they are based. This process was applied to two organisms of great importance to disease and biotechnological applications, Pseudomonas aeruginosa and Pseudomonas putida, respectively. The result is a pair of revised genome-scale reconstructions for these organisms that can be analyzed at a systems level with confidence that differences are indicative of true biological differences (to the degree that is currently known), rather than artifacts of the reconstruction process. The reconstructions were re-validated with various experimental data after reconciliation. With the reconciled and validated reconstructions, we performed a genome-wide comparison of metabolic flexibility between P. aeruginosa and P. putida that generated significant new insight into the underlying biology of these important organisms. Through this work, we provide a novel methodology for reconciling models, present new genome-scale reconstructions of P. aeruginosa and P. putida that can be directly compared at a network level, and perform a network-wide comparison of the two species. These reconstructions provide fresh insights into the metabolic similarities and differences between these important Pseudomonads, and pave the way towards full comparative analysis of genome-scale metabolic reconstructions of multiple species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.