Abstract:The behavior of financial markets has frustrated, and continues to frustrate, investors and academics. By utilizing a complex systems framework, researchers have discovered new fields of investigations that have provided meaningful insight into the behavior of financial markets. The use of agent-based models (ABMs) and the inclusion of network science have played an important role in increasing the relevance of the complex systems to financial markets. The challenge of how best to combine these new techniques to produce meaningful results that can be accepted by the broader community remains an issue. By implementing an artificial stock market that utilizes an Ising model based agent-based model (ABM), this paper provides insights into the mechanisms that drive the returns in financial markets, including periods of elevated prices and excess volatility. A key finding is that the network topology investors form significantly a ects the behavior of the market, with the exception being if investors have a bias to following their neighbors, at which point the topology becomes redundant. The model also investigates the impact of introducing multiple risky assets, something that has been absent in previous attempts. By successfully addressing these issues this paper helps to refine and shape a variety of further research tasks for the use of ABMs in uncovering the dynamics of financial markets.
The inability of investors and academics to consistently predict, and understand the behavior of¯nancial markets has forced the search for alternative analytical frameworks. Analyzinḡ nancial markets as complex systems is a framework that has demonstrated great promises, with the use of agent-based models (ABMs) and the inclusion of network science playing an important role in increasing the relevance of the framework. Using an arti¯cial stock market created via an ABM, this paper provides a signi¯cant insight into the mechanisms that drive the returns in¯nancial markets, including periods of elevated prices and excess volatility. The paper demonstrates that the network topology that investors form and the dividend policy of¯rms signi¯cantly a®ect the behavior of the market. However, if investors have a bias to following their neighbors then the topology becomes redundant. By successfully addressing these issues this paper helps re¯ne and shape a variety of additional research tasks for the use of ABMs in uncovering the dynamics of¯nancial markets.
The unexplained and inconsistent behavior of financial markets provides the motivation to engage interdisciplinary approaches to understand its intricacies better. A proven approach is to consider investors as heterogeneous interacting agents who form information networks to inform their investment decisions. The rationale is that the topology of these networks has contributed to a better understanding of the erratic behavior of financial markets. Introducing investor heterogeneity also allows researchers to identify the characteristics of higher performing investors and the implications of investors exhibiting short-termism, a feature recognized by some as detrimental to the performance of the economy. To address these topics, an agent-based artificial stock market is implemented, where investors utilize various information sources, including advice from investors in their network, to inform their investment decisions. Over time investors update their trust in their information sources and evolve their network by connecting to outperforming investors—Oracles—and discarding poor advisers, thereby simulating the evolution of an investor network. The model’s most significant finding is uncovering how the market’s behavior is materially affected by the time-horizon of investors, with short-term behavior resulting in greater volatility in the market. Another finding is the reason why short-term investors generally outperform their long-term counterparts, particularly in more volatile environments. By providing significant insights into the formation of an investor network and its ramifications for market volatility and wealth creation (destruction), this paper provides crucial clues regarding the empirical data that needs to be collected, assessed, and tracked to ensure policymakers and investors better understand the dynamics of financial markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.