NAD(P)H:quinone oxidoreductase (NQO1) is elevated in human pancreatic cancers. We hypothesized that beta-lapachone, a novel 1,2-naphthoquinone with potential antitumor activity in cancer cells expressing elevated levels of NQO1, would induce cytotoxicity in pancreatic cancer cells, wherein this two-electron reductase was recently found elevated. beta-lapachone decreased clonogenic cell survival, metabolic cell viability, and anchorage- independent growth in soft agar. The cytotoxic in vitro effects of beta-lapachone were inhibited with coadministration of dicumarol, a specific inhibitor of NQO1. In preestablished human pancreatic tumor xenografts in nude mice, beta-lapachone demonstrated greater tumor growth inhibition when given intratumorally compared to when complexed with cyclodextrin to increase its bioavailability. Due to the poor prognosis of patients with pancreatic cancer and the limited effectiveness of surgery, chemotherapy, and radiation therapy, treatment regimens based on sound, tumor-specific rationales are desperately need for this disease.
Conclusions: Inhibition of NQO 1 with dicumarol induces cell killing and oxidative stress in pancreatic cancer cells and speculate that dicumarol may prove to be useful in pancreatic cancer therapeutics.
Manganese superoxide dismutase (MnSOD) levels have been found to be low in human pancreatic cancer [Pancreas 26, (2003), 23] and human pancreatic cancer cell lines [Cancer Res. 63, (2003), 1297] when compared to normal human pancreas. We hypothesized that stable overexpression of pancreatic cancer cells with MnSOD cDNA would alter the malignant phenotype. MIA PaCa-2 cells were stably transfected with a pcDNA3 plasmid containing sense human MnSOD cDNA or containing no MnSOD insert by using the lipofectAMINE method. G418-resistant colonies were isolated, grown and maintained. Overexpression of MnSOD was confirmed in two selected clones with a 2-4-fold increase in MnSOD immunoreactive protein. Compared with the parental and neo control cells, the MnSOD-overexpressing clones had decreased growth rates, growth in soft agar and plating efficiency in vitro, while in vivo, the MnSOD-overexpressing clones had slower growth in nude mice. These results suggest that MnSOD may be a tumor suppressor gene in human pancreatic cancer.
NAD(P)H:quinone oxidoreductase (NQO1) functions as an important part of cellular antioxidant defense by detoxifying quinones, thus preventing the formation of reactive oxygen species (ROS). The aim of our study was to determine if NQO1 is elevated in pancreatic cancer specimens and pancreatic cancer cell lines and if so, would compounds previously demonstrated to redox cycle with NQO1 be effective in killing pancreatic cancer cells. Immunohistochemistry of resected pancreatic specimens demonstrated an increased immunoreactivity for NQO1 in pancreatic cancer and pancreatic intraepithelial neoplasia (PanIN) specimens versus normal human pancreas. Immunocytochemistry and Western immunoblots demonstrated increased immunoreactivity in pancreatic cancer cells when compared to a near normal immortalized human pancreatic ductal epithelial cell line and a colonic epithelial cell line. Streptonigrin, a compound known to cause redox cycling in the presence of NQO1, decreased clonogenic survival and decreased anchorage-independent growth in soft agar. Streptonigrin had little effect on cell lines with absent or reduced levels of NQO1. The effects of streptonigrin were reversed in pancreatic cancer cells pretreated with dicumarol, a known inhibitor of NQO1. NQO1 may be a therapeutic target in pancreatic cancer where survival is measured in months.
Quinone oxidoreductase (NQO1) functions as an important part of cellular antioxidant defense by detoxifying quinones, thus preventing the formation of reactive oxygen species. The aims of our study were to determine if NQO1 is elevated in pancreatic cancer specimens and pancreatic cancer cell lines and if so, would compounds previously demonstrated to redox cycle with NQO1 be effective in killing pancreatic cancer cells. Immunohistochemistry of resected pancreatic specimens demonstrated an increased immunoreactivity for NQO1 in pancreatic cancer and pancreatic intraepithelial neoplasia (PanIN) specimens versus normal human pancreas. Immunocytochemistry and Western immunoblots demonstrated inceased immunoreactivity in pancreatic cancer cells when compared to a near normal immortalized human pancreatic ductal epithelial cell line and a colonic epithelial cell line. Streptonigrin, a compound known to cause redox cycling in the presence of NQO1, decreased clonogenic survival and decreased anchorage-independent growth in soft agar. Streptonigrin had little effect on cell lines with absent or reduced levels of NQO1. The effects of streptonigrin were reversed in pancreatic cancer cells pretreated with dicumarol, a known inhibitor of NQO1. NQO1 may be a therapeutic target in pancreatic cancer where survival is measured in months. © 2006 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.