Prebiotic systems chemistry suggests that high phosphate concentrations were necessary to synthesise molecular building blocks and sustain primitive cellular systems. However, current understanding of mineral solubility predicts negligible phosphate concentrations for most natural waters, yet the role of Fe2+, ubiquitous on early Earth, is poorly quantified. Here we determine the solubility of Fe(II)-phosphate in synthetic seawater as a function of pH and ionic strength, integrate these observations into a thermodynamic model that predicts phosphate concentrations across a range of aquatic conditions, and validate these predictions against modern anoxic sediment pore waters. Experiments and models show that Fe2+ significantly increases the solubility of all phosphate minerals in anoxic systems, suggesting that Hadean and Archean seawater featured phosphate concentrations ~103–104 times higher than currently estimated. This suggests that seawater readily met the phosphorus requirements of emergent cellular systems and early microbial life, perhaps fueling primary production during the advent of oxygenic photosynthesis.
Rationale Oxygen and hydrogen isotopes are important tools for studying the modern and past hydrological cycle. Previous evaporation experiments used episodic measurement of liquid and/or vapor or did not measure all isotopologues of water. Here, we describe an evaporation experimental system that allows all isotopologues of liquid and water vapor to be measured simultaneously and near‐continuously at high precision using cavity ring‐down laser spectroscopy (CRDS). Methods Evaporating liquid is periodically sampled from a closed recirculating loop by a syringe pump that delivers a constant supply of water to the vaporizer, achieving a water vapor concentration of 20,000 ppmV H2O (±132, 1σ). Vapor is sampled directly from the evaporation chamber. Isotope ratios are measured simultaneously with a Picarro L2140‐i CRDS instrument. Results For liquid measurements, Allan variance analysis indicates an optimum data collection window of 34 min for oxygen isotopes and 27 min for hydrogen isotopes. During these periods, the mean standard error is ±0.0081‰ for δ17O values, ±0.0081‰ for δ18O values, and ±0.019‰ for δ2H values. For the derived parameters 17O‐excess and d‐excess, the standard error of the mean is 5.8 per meg and 0.07‰, respectively. For the vapor phase a 12.5 min data window for all isotopologues results in a mean standard error of ±0.012‰ for δ17O values, ±0.011‰ for δ18O values, and ±0.023‰ for δ2H values. For the derived parameters, the standard error of the mean is 9.2 per meg for 17O‐excess and 0.099‰ for d‐excess. These measurements result in consistently narrow 95% confidence limits for the slopes of ln(δ17O + 1) vs ln(δ18O + 1) and ln(δ2H + 1) vs ln(δ18O + 1). Conclusions The experimental method permits measurement of fractionation of triple‐oxygen and hydrogen isotopes of evaporating water under varying controlled conditions at high precision. Application of this method will be useful for testing theoretical models of evaporation and conducting experiments to simulate evaporation and isotopic equilibration in natural systems.
<p>Here, we describe a system for measuring triple oxygen and hydrogen isotopic ratios of both the liquid and vapour during evaporation of water in a dry gas stream (N2 or dry air) at constant temperature and relative humidity (RH).&#160; The hardware consists of a polymer glove box (COY), peristaltic pump (Ismatec), and Picarro L2140-i cavity ring-down laser spectrometer (CRDS) with Standard Delivery Module (SDM). Liquid water from the evaporation pan is sampled via a closed recirculating loop and syringe pump that delivers a constant rate of water to the vaporizer, maintaining a constant concentration of water vapour in the cell (20,000 &#177;103, 1 s.d.) over an injection cycle. Liquid measurements alternate with vapour from the glove box which is introduced to the CRDS using a diaphragm gas pump. Important for high-precision measurements, both cavity pressure and outlet valve stability are maintained throughout the liquid injection and subsequent vapour phase. Experiments are bookended by two in-house standards which are calibrated to the SMOW-SLAP scales. An additional drift corrector is introduced periodically.</p><p>&#160;</p><p>To test the precision and stability of the liquid injections, we sampled from an isotopically homogeneous volume of water and introduced it to the cavity over a period of ~48h. To minimise the standard deviation derived from noise, we chose an optimum integration time of ~2000s (~33 minutes) based on &#963;<sub>Allan </sub>minimisation. Therefore, for combined liquid-vapour experiments we use an injection/vapour sampling window of 40-minutes (140ug water is consumed per injection), which provides a data collection period of 33-minutes after a 7-min waiting time for equilibration.</p><p>&#160;</p><p>Across a single liquid injection, the mean standard error for d<sup>17</sup>O, d<sup>18</sup>O, and dD is 0.008&#8240;, 0.007&#8240;, and 0.02&#8240;, respectively. For the vapour phase equivalent, the mean standard error for d<sup>17</sup>O, d<sup>18</sup>O, and dD is 0.01&#8240;, 0.009&#8240;, 0.03&#8240; respectively. For the d-excess in the liquid and the vapour across one 33-minute cycle, the standard error is 0.07&#8240; and 0.08&#8240;, respectively. For the O17-excess in the liquid and the vapour across one 33-minute cycle, the standard error is 6 per meg and 8 per meg, respectively.</p><p>&#160;</p><p>A single evaporation experiment produces in excess of 100,000 measurements each of d<sup>17</sup>O, d<sup>18</sup>O, and dD for both the evaporating liquid and resulting vapour. These measurements result in 95% confidence limits for the slope of ln(d<sup>17</sup>O+1) vs ln(d<sup>18</sup>O+1) of &#177;0.0002 and &#177;0.0003 for the liquid and vapour, respectively.&#160; For the slope of ln(dD+1) vs ln(d<sup>18</sup>O+1) we obtain a 95% confidence interval of &#177;0.001 and &#177;0.002 for the liquid and vapour, respectively. The experimental method permits measurement of fractionation of triple oxygen and hydrogen isotopes of water under varying experimental conditions (e.g., RH, temperature, turbulence) at very high precision. It will be useful for testing numerical models of evaporation and conducting experiments to simulate evaporation and isotopic equilibration in natural systems. An application to closed-basin lakes will be presented.</p>
<p><span>The Thar Desert (NW India) has numerous evaporative saline playa lakes. Some are still active and others are dry and preserve up to several meters of sedimentary deposits. These deposits feature a variety of evaporite minerals, including the hydrated mineral gypsum (CaSO<sub>4</sub>&#160;2H<sub>2</sub>O). Assuming no secondary exchange, the isotopic composition of the gypsum hydration water preserves the &#948;<sup>18</sup>O,&#160;&#948;<sup>17</sup>O and&#160;&#948; D of palaeolake water at the time of gypsum formation. This method provides a way to understand the hydrologic balance in a part of the world where it is typically very difficult to obtain palaeoclimate records. Our 36-hour pan evaporation experiment on site shows that triple oxygen isotopes track changes in evaporative conditions, which vary diurnally due to fluctuating temperature and relative humidity, and appear to reflect night-time condensation. We present new palaeohydrological records from two dry playas (Karsandi, Khajuwala) and one active playa (Lunkaransar) in the Thar Desert using the triple oxygen and hydrogen isotopic composition of gypsum hydration water. Results show that a source of water maintained active playa lake basins in the central Thar Desert for much of the Holocene, either by enhanced direct precipitation and/or fluvial sources. The derived&#160;<sup>17</sup>O-excess and d-excess data potentially enable modelling of past changes in relative humidity, once other parameters (windiness, evaporation/inflow, etc.) are set. </span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.