Cytosolic DNA is characteristic of chromosomally unstable metastatic cancer cells, resulting in constitutive activation of the cGAS–STING innate immune pathway. How tumors co-opt inflammatory signaling while evading immune surveillance remains unknown. Here, we show that the ectonucleotidase ENPP1 promotes metastasis by selectively degrading extracellular cGAMP, an immune-stimulatory metabolite whose breakdown products include the immune suppressor adenosine. ENPP1 loss suppresses metastasis, restores tumor immune infiltration, and potentiates response to immune checkpoint blockade in a manner dependent on tumor cGAS and host STING. Conversely, overexpression of wild-type ENPP1, but not an enzymatically weakened mutant, promotes migration and metastasis, in part through the generation of extracellular adenosine, and renders otherwise sensitive tumors completely resistant to immunotherapy. In human cancers, ENPP1 expression correlates with reduced immune cell infiltration, increased metastasis, and resistance to anti–PD-1/PD-L1 treatment. Thus, cGAMP hydrolysis by ENPP1 enables chromosomally unstable tumors to transmute cGAS activation into an immune-suppressive pathway. Significance: Chromosomal instability promotes metastasis by generating chronic tumor inflammation. ENPP1 facilitates metastasis and enables tumor cells to tolerate inflammation by hydrolyzing the immunotransmitter cGAMP, preventing its transfer from cancer cells to immune cells. This article is highlighted in the In This Issue feature, p. 995
Optimisation and validation of a multiplex immunofluorescence (mIF) workflow, from staining to digital image analysis (DIA), ensure assay robustness. Chromogenic immunohistochemistry (IHC) and fluorescent singleplexes are fundamental in this process, particularly when biomarkers are co‐expressed. We describe our experience developing two mIF panels and the various parameters of staining, scanning and DIA to consider when standardising a digital pathology workflow.
Identifying mismatch repair-deficient colon cancer: near-perfect concordance between immunohistochemistry and microsatellite instability testing in a large, population-based series Aims: Establishing the mismatch repair (MMR) status of colorectal cancers is important to enable the detection of underlying Lynch syndrome and inform prognosis and therapy. Current testing typically involves either polymerase chain reaction (PCR)-based microsatellite instability (MSI) testing or MMR protein immunohistochemistry (IHC). The aim of this study was to compare these two approaches in a large, population-based cohort of stage 2 and 3 colon cancer cases in Northern Ireland. Methods and results: The study used the Promega pentaplex assay to determine MSI status and a four-antibody MMR IHC panel. IHC was applied to tumour tissue microarrays with triplicate tumour sampling, and assessed manually. Of 593 cases with available MSI and MMR IHC results, 136 (22.9%) were MSI-high (MSI-H) and 135 (22.8%) showed abnormal MMR IHC. Concordance was extremely high, with 97.1% of MSI-H cases showing abnormal MMR IHC, and 97.8% of cases with abnormal IHC showing MSI-H status. Under-representation of tumour epithelial cells in samples from heavily inflamed tumours resulted in misclassification of several cases with abnormal MMR IHC as microsatellite-stable. MMR IHC revealed rare cases with unusual patterns of MMR protein expression, unusual combinations of expression loss, or secondary clonal loss of expression, as further illustrated by repeat immunostaining on whole tissue sections. Conclusions: MSI PCR testing and MMR IHC can be considered to be equally proficient tests for establishing MMR/MSI status, when there is awareness of the potential pitfalls of either method. The choice of methodology may depend on available services and expertise.
Targeting of the programmed cell death protein (PD-1)/programmed death-ligand 1 (PD-L1) axis with checkpoint inhibitors has changed clinical practice in non-small cell lung cancer (NSCLC). However, clinical assessment remains complex and ambiguous. We aim to assess whether digital image analysis (DIA) and multiplex immunofluorescence can improve the accuracy of PD-L1 diagnostic testing. A clinical cohort of routine NSCLC patients reflex tested for PD-L1 (SP263) immunohistochemistry (IHC), was assessed using DIA. Samples of varying assessment difficulty were assessed by multiplex immunofluorescence. Sensitivity, specificity, and concordance was evaluated between manual diagnostic evaluation and DIA for chromogenic and multiplex IHC. PD-L1 expression by DIA showed significant concordance (R² = 0.8248) to manual assessment. Sensitivity and specificity was 86.8% and 91.4%, respectively. Evaluation of DIA scores revealed 96.8% concordance to manual assessment. Multiplexing enabled PD-L1+/CD68+ macrophages to be readily identified within PD-L1+/cytokeratin+ or PD-L1-/cytokeratin+ tumor nests. Assessment of multiplex vs. chromogenic IHC had a sensitivity and specificity of 97.8% and 91.8%, respectively. Deployment of DIA for PD-L1 diagnostic assessment is an accurate process of case triage. Multiplex immunofluorescence provided higher confidence in PD-L1 assessment and could be offered for challenging cases by centers with appropriate expertise and specialist equipment.
IntroductionPatient suitability to anti–programmed death ligand 1 (PD-L1) immune checkpoint inhibition is key to the treatment of NSCLC. We present, applied to PD-L1 testing: a comprehensive cross-validation of two immunohistochemistry (IHC) clones; our descriptive experience in diagnostic reflex testing; the concordance of IHC to in situ RNA (RNA-ISH); and application of digital pathology.MethodsEight hundred thirteen NSCLC tumor samples collected from 564 diagnostic samples were analyzed prospectively, and 249 diagnostic samples analyzed retrospectively in tissue microarray format. Validated methods for IHC and RNA-ISH were tested in tissue microarrays and full sections and the QuPath system were used for digital pathology analysis.ResultsAntibody concordance of clones SP263 and 22C3 validation was 97% to 98% in squamous cell carcinoma and adenocarcinomas, respectively. Clinical NSCLC cases were reported as PD-L1–negative (48%), 1% to 49% (23%), and more than 50% (29%), with differences associated to tissue-type and EGFR status. Comparison of IHC and RNA-ISH was highly concordant in both subgroups. Comparison of digital assessment versus manual assessment was highly concordant. Discrepancies were mostly around the 1% clinical threshold. Challenging IHC interpretation included 1) calculating the total tumor cell denominator and the nature of PD-L1 expressing cell aggregates in cytology samples; 2) peritumoral expression of positive immune cells; 3) calculation of positive tumor percentages around clinical thresholds; and 4) relevance of the 100 malignant cell rule.ConclusionsSample type and EGFR status dictate differences in the expected percentage of PD-L1 expression. Analysis of PD-L1 is challenging, and interpretative guidelines are discussed. PD-L1 evaluations by RNA-ISH and digital pathology appear reliable, particularly in adenocarcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.