Through research, restoration of agro-ecological sites, and a renaissance of cultural awareness in Hawaiʻi, there has been a growing recognition of the ingenuity of the Hawaiian biocultural resource management system. The contemporary term for this system, “the ahupuaʻa system”, does not accurately convey the nuances of system function, and it inhibits an understanding about the complexity of the system’s management. We examined six aspects of the Hawaiian biocultural resource management system to understand its framework for systematic management. Based on a more holistic understanding of this system’s structure and function, we introduce the term, “the moku system”, to describe the Hawaiian biocultural resource management system, which divided large islands into social-ecological regions and further into interrelated social-ecological communities. This system had several social-ecological zones running horizontally across each region, which divided individual communities vertically while connecting them to adjacent communities horizontally; and, thus, created a mosaic that contained forested landscapes, cultural landscapes, and seascapes, which synergistically harnessed a diversity of ecosystem services to facilitate an abundance of biocultural resources. “The moku system”, is a term that is more conducive to large-scale biocultural restoration in the contemporary period, while being inclusive of the smaller-scale divisions that allowed for a highly functional system.
The secretive breeding behaviour of petrels makes monitoring their breeding populations challenging. To assess population trends of Cory’s Shearwater Calonectris diomedea, Bulwer’s Petrel Bulweria bulwerii and Macaronesian Shearwater Puffinus baroli in Tenerife from 1990 to 2010, we used data from rescue campaigns that aim to reduce the mortality of fledgling petrels attracted to artificial lights as proxies for trends in breeding population size. Despite increases in human population size and light pollution, the number of rescued fledglings of Cory’s Shearwater and Bulwer’s Petrel increased and remained stable, respectively, whereas numbers of rescued Macaronesian Shearwaters sharply declined. In the absence of more accurate population estimates, these results suggest a worrying decline in the Macaronesian Shearwater’s breeding population.
This report documents a methodology for projecting the geographic ranges of plant species in the Hawaiian Islands. The methodology consists primarily of the creation of several geographic information system (GIS) data layers depicting attributes related to the geographic ranges of plant species. The most important spatial-data layer generated here is an objectively defined classification of climate as it pertains to the distribution of plant species. By examining previous zonal-vegetation classifications in light of spatially detailed climate data, broad zones of climate relevant to contemporary concepts of vegetation in the Hawaiian Islands can be explicitly defined. Other spatial-data layers presented here include the following: substrate age, as large areas of the island of Hawaiÿi, in particular, are covered by very young lava flows inimical to the growth of many plant species; biogeographic regions of the larger islands that are composites of multiple volcanoes, as many of their species are restricted to a given topographically isolated mountain or a specified group of them; and human impact, which can reduce the range of many species relative to where they formerly were found. Other factors influencing the geographic ranges of species that are discussed here but not developed further, owing to limitations in rendering them spatially, include topography, soils, and disturbance. A method is described for analyzing these layers in a GIS, in conjunction with a database of species distributions, to project the ranges of plant species, which include both the potential range prior to human disturbance and the projected present range. Examples of range maps for several species are given as case studies that demonstrate different spatial characteristics of range. Several potential applications of species-range maps are discussed, including facilitating field surveys, informing restoration efforts, studying range size and rarity, studying biodiversity, managing invasive species, and planning of conservation efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.