Cyanobacterium Synechococcus sp. PCC 7002 contains a single gene (glbN) coding for GlbN, a protein of the 2/2 hemoglobin lineage. The precise function of GlbN is not known, but comparison to similar 2/2 hemoglobins suggests that reversible dioxygen binding is not its main activity. In this report, the results of in vitro and in vivo experiments probing the role of GlbN are presented. Transcription profiling indicated that glbN is not strongly regulated under any of a large number of growth conditions and that the gene is probably constitutively expressed. High levels of nitrate, used as the sole source of nitrogen, and exposure to nitric oxide were tolerated better by the wild-type strain than a glbN null mutant, whereas overproduction of GlbN in the null mutant background restored the wild-type growth. The cellular contents of reactive oxygen/nitrogen species were elevated in the null mutant under all conditions and were highest under NO challenge or in the presence of high nitrate concentrations. GlbN overproduction attenuated these contents significantly under the latter conditions. The analysis of cell extracts revealed that the heme of GlbN was covalently bound to overproduced GlbN apoprotein in cells grown under microoxic conditions. A peroxidase assay showed that purified GlbN does not possess significant hydrogen peroxidase activity. It was concluded that GlbN protects cells from reactive nitrogen species that could be encountered naturally during growth on nitrate or under denitrifying conditions. The solution structure of covalently modified GlbN was determined and used to rationalize some of its chemical properties.
In the absence of an exogenous ligand, the hemoglobins from the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 coordinate the heme group with two axial histidines (His46 and His70). These globins also form a covalent linkage between the heme 2-vinyl substituent and His117. The in vitro mechanism of heme attachment to His117 was examined with a combination of site-directed mutagenesis, NMR spectroscopy, and optical spectroscopy. The results supported an electrophilic addition with vinyl protonation being the rate-determining step. Replacement of His117 with a cysteine demonstrated that the reaction could occur with an alternative nucleophile. His46 (distal histidine) was implicated in the specificity of the reaction for the 2-vinyl group as well as protection of the protein from oxidative damage caused by exposure to exogenous H2O2.
Protein kinases are enzymes that catalyze the covalent transfer of the γ-phosphate of an adenosine triphosphate (ATP) molecule onto a tyrosine, serine, threonine, or histidine residue in the substrate and thus send a chemical signal to networks of downstream proteins. They are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Unregulated protein kinase activity is often associated with a wide range of diseases, therefore making protein kinases major therapeutic targets. A prototypical system of central interest to understand the regulation of kinase activity is provided by tyrosine kinase c-Src, which belongs to the family of Src-related non-receptor tyrosine kinases (SFKs). Although the broad picture of autoinhibition via the regulatory domains and via the phosphorylation of the C-terminal tail is well characterized from a structural point of view, a detailed mechanistic understanding at the atomic-level is lacking. Advanced computational methods based on all-atom molecular dynamics (MD) simulations are employed to advance our understanding of tyrosine kinase activation. The computational studies suggest that the isolated kinase domain (KD) is energetically most favorable in the inactive conformation when the activation loop (A-loop) of the KD is not phosphorylated. The KD makes transient visits to a catalytically competent active-like conformation. The process of bimolecular trans-autophosphorylation of the A-loop eventually locks the KD in the active state. Activating point mutations may act by slightly increasing the population of the active-like conformation, enhancing the availability of the A-loop to be phosphorylated. The Src-homology 2 (SH2) and Src-homology 3 (SH3) regulatory domains, depending upon their configuration, either promote the inactive or the active state of the kinase domain. In addition to the roles played by the SH3, SH2, and KD, the Src-homology 4-Unique domain (SH4-U) region also serves as a key moderator of substrate specificity and kinase function. Thus, a fundamental understanding of the conformational propensity of the SH4-U region and how this affects the association to the membrane surface are likely to lead to the discovery of new intermediate states and alternate strategies for inhibition of kinase activity for drug discovery. The existence of a multitude of KD conformations poses a great challenge aimed at the design of specific inhibitors. One promising computational strategy to explore the conformational flexibility of the KD is to construct Markov state models from aggregated MD data.
Many heme proteins undergo covalent attachment of the heme group to a protein side chain. Such posttranslational modifications alter the thermodynamic and chemical properties of the holoprotein. Their importance in biological processes makes them attractive targets for mechanistic studies. We have proposed a reductively driven mechanism for the covalent heme attachment in the monomeric hemoglobins produced by the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 (GlbN) (Nothnagel et al. in J Biol Inorg Chem 16:539–552, 2011). These GlbNs coordinate the heme iron with two axial histidines, a feature that distinguishes them from most hemoglobins and conditions their redox properties. Here, we uncovered evidence for an electron exchange chain reaction leading to complete heme modification upon substoichiometric reduction of GlbN prepared in the ferric state. The GlbN electron self-exchange rate constants measured by NMR spectroscopy were on the order of 102–103 M−1 s−1 and were consistent with the proposed autocatalytic process. NMR data on ferrous and ferric Synechococcus GlbN in solution indicated little dependence of the structure on the redox state of the iron or cross-link status of the heme group. This allowed the determination of lower bounds to the cross-exchange rate constants according to Marcus theory. The observations illustrate the ability of bishistidine hemoglobins to undergo facile interprotein electron transfer and the chemical relevance of such transfer for covalent heme attachment.
The cyanobacterium Synechococcus sp. PCC 7002 uses a hemoglobin of the truncated lineage (GlbN) in the detoxification of reactive species generated in the assimilation of nitrate. In view of a sensing or enzymatic role, several states of GlbN are of interest with respect to its structure-activity relationship. Nuclear magnetic resonance spectroscopy was applied to compare the structure and backbone dynamics of six GlbN forms differing in their oxidation state [Fe(II) or Fe(III)], distal ligand to the iron (histidine, carbon monoxide, or cyanide), or heme post-translational modification (b heme or covalently attached heme). Structural properties were assessed with pseudocontact shift calculations. (15)N relaxation data were analyzed by reduced spectral density mapping (picosecond to nanosecond motions) and by inspection of elevated R(2) values (microsecond to millisecond motions). On the picosecond to nanosecond time scale, GlbN exhibited little flexibility and was unresponsive to the differences among the various forms. Regions of slightly higher mobility were the CE turn, the EF loop, and the H-H' kink. In contrast, fluctuations on the microsecond to millisecond time scale depended on the form. Cyanide binding to the ferric state did not enhance motions, whereas reduction to the ferrous bis-histidine state resulted in elevated R(2) values for several amides. This response was attributed, at least in part, to a weakening of the distal histidine coordination. Carbon monoxide binding quenched some of these fluctuations. The results emphasized the role of the distal ligand in dictating backbone flexibility and illustrated the multiple ways in which motions are controlled by the hemoglobin fold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.