Bacterial vaginosis (BV) is the most commonly treated female reproductive tract affliction, characterized by the displacement of healthy lactobacilli by an overgrowth of pathogenic bacteria. BV can contribute to pathogenic inflammation, preterm birth, and susceptibility to sexually transmitted infections. As the bacteria responsible for BV pathogenicity and their interactions with host immunity are not understood, we sought to evaluate the effects of BV-associated bacteria on reproductive epithelia. Here we have characterized the interaction between BV-associated bacteria and the female reproductive tract by measuring cytokine and defensin induction in three types of FRT epithelial cells following bacterial inoculation. Four BV-associated bacteria were evaluated alongside six lactobacilli for a comparative assessment. While responses differed between epithelial cell types, our model showed good agreement with clinical BV trends. We observed a distinct cytokine and human β-defensin 2 response to BV-associated bacteria, especially Atopobium vaginae, compared to most lactobacilli. One lactobacillus species, Lactobacillus vaginalis, induced an immune response similar to that elicited by BV-associated bacteria, stimulating significantly higher levels of cytokines and human β-defensin 2 than other lactobacilli. These data provide an important prioritization of BV-associated bacteria and support further characterization of reproductive bacteria and their interactions with host epithelia. Additionally, they demonstrate the distinct immune response potentials of epithelial cells from different locations along the female reproductive tract.
Worldwide, nearly two million children are infected with human immunodeficiency virus (HIV), with breastfeeding accounting for the majority of contemporary HIV transmissions. Antiretroviral therapy (ART) has reduced HIV-related morbidity and mortality but is not curative. The main barrier to a cure is persistence of latent HIV in long-lived reservoirs. However, our understanding of the cellular and anatomic sources of the HIV reservoir during infancy and childhood is limited. Here, we developed a pediatric model of ART suppression in orally simian immunodeficiency virus (SIV)-infected rhesus macaque (RM) infants, with measurement of virus persistence in blood and tissues after 6 to 9 months of ART. Cross-sectional analyses were conducted to compare SIV RNA and DNA levels in adult and infant RMs naive to treatment and on ART. We demonstrate efficient viral suppression following ART initiation in SIV-infected RM infants with sustained undetectable plasma viral loads in the setting of heterogeneous penetration of ART into lymphoid and gastrointestinal tissues and low drug levels in the brain. We further show reduction in SIV RNA and DNA on ART in lymphoid tissues of both infant and adult RMs but stable (albeit low) levels of SIV RNA and DNA in the brains of viremic and ART-suppressed infants. Finally, we report a large contribution of naive CD4 T cells to the total CD4 reservoir of SIV in blood and lymph nodes of ART-suppressed RM infants that differs from what we show in adults. These results reveal important aspects of HIV/SIV persistence in infants and provide insight into strategic targets for cure interventions in a pediatric population. While antiretroviral therapy (ART) can reduce HIV replication, the virus cannot be eradicated from an infected individual, and our incomplete understanding of HIV persistence in reservoirs greatly complicates the generation of a cure for HIV infection. Given the immaturity of the infant immune system, it is critically important to study HIV reservoirs specifically in this population. Here, we established a pediatric animal model to simulate breastfeeding transmission and study SIV reservoirs in rhesus macaque (RM) infants. Our study demonstrates that ART can be safely administered to infant RMs for prolonged periods and that it efficiently controls viral replication in this model. SIV persistence was shown in blood and tissues, with similar anatomic distributions of SIV reservoirs in infant and adult RMs. However, in the peripheral blood and lymph nodes, a greater contribution of the naive CD4 T cells to the SIV reservoir was observed in infants than in adults.
Human Staphylococcus aureus (SA) nasal carriage provides a reservoir for the dissemination of infectious strains; however, factors regulating the establishment and persistence of nasal colonization are mostly unknown. We measured carriage duration and nasal fluid inflammatory markers after nasally inoculating healthy participants with their previously isolated SA strains. Ten out of 15 studies resulted in rapid clearance (9±6 days) that corresponded with upregulated chemokines, growth factors, and predominantly Th1-type cytokines, but not IL-17. Nasal SA persistence corresponded with elevated baseline levels of MIP-1β, IL-1β, and IL-6, no induction of inflammatory factors post-inoculation, and decreased IL-1RA:IL-1β ratio. SA-expressed staphylococcal protein A (SpA) levels correlated positively with carriage duration. Competitive inoculation studies revealed that isogenic SpA knockout (ΔSpA) strains were cleared faster than wild-type only in participants with upregulated inflammatory markers post-inoculation. The remaining participants did not mount an inflammatory response and did not clear either strain. ΔSpA strains demonstrated lower growth rates in carrier nasal fluids and lower survival rates when incubated with neutrophils. Collectively, the presented studies identify innate immune effectors that cooperatively modulate nasal carriage duration, and confirm SpA as a bacterial co-determinant of SA nasal carriage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.