A structure–property study of non-fullerene acceptors based on azadipyrromethene derivatives was performed. Power conversion efficiencies between 2 and 4% were obtained when blended with poly(3-hexylthiophene) as the donor.
An efficient transnitrilation of aryl boronic acids with dimethylmalononitrile (DMMN) is described. This rhodium‐catalyzed electrophilic cyanation presents a novel approach to prepare aryl nitriles by using a carbon‐bound cyanating reagent which undergoes cross‐coupling with the aryl boronic acid. The reaction expands the degree of functional‐group compatibility exhibited by the transnitrilation of aryl Grignard and aryllithium reagents. A variety of aryl boronic acid derivatives and dialkylmalononitriles were amenable to the transnitrilation.
Currently there is a need for specialized pyrotechnic materials to combat the threat of biological weapons. Materials have been characterized based on their potential to produce heat and molecular iodine gas (I2) to kill spore‐forming bacteria (e. g. anthrax). One formulation, already proven to kill anthrax simulants, is diiodine pentoxide with aluminum; however, it suffers from poor stability and storage problems. The heat and iodine gas output from this mixture and candidate replacement mixtures were measured with bomb calorimetry and extraction and analysis of I2 by UV‐Vis. Of the mixtures analyzed, calcium iodate and aluminum was found to be the highest producer of I2. The heat output of this mixture and others can be tuned by adding more fuel, with the cost of some iodine. Products of combustion were analyzed by thermal analysis (SDT), XPS, XRD, and LC/MS. Evidence for various metal iodides and metal oxides was collected with these methods.
This work appears to have confirmed the gas-phase reaction mechanism of HMTD with alcohols. As we continue efforts to characterize this unusual molecule, the information may prove useful in determining formation and degradation mechanism(s). In addition, this property of HMTD may find use in other fields of science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.