This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Three-dimensional (3D) radionuclide imaging provides detailed information on the distribution of inhaled aerosol material within the body. Analysis of the data can provide estimates of the deposition per airway generation. Information on regional distribution of deposited aerosol can also be obtained from 24-hour clearance measurements. In this study, a nebulizer was used to deliver a radiolabeled aerosol to nine human subjects. Single photon emission computed tomography (SPECT) has been used to assess the distribution of aerosol deposition per airway generation. The deposition pattern was also estimated using measurements of the aerosol remaining in the lung 24 h after inhalation. The error in the SPECT value was assessed by simulation and that in the 24-h clearance value by repeat analysis. The mean fraction of lung deposition in the conducting airway (CADF) from SPECT was 0.21. The corresponding 24-h clearance value was 0.23. These values were not significantly different. There was a weak but non-significant correlation between the SPECT and 24-h measurements (r = 0.49). The standard error of the difference was 0.11. The corresponding errors on the SPECT and 24-h clearance measurements were 0.04 and 0.05, respectively. There was no systematic difference between the values of conducting airways deposition obtained from 24-h measurements and SPECT. However, there were random differences on individual subjects, which were larger than the estimated measurement errors.
Introduction
COVID-19 has impacted ophthalmic care delivery, with many units closed and several ophthalmologists catching COVID-19. Understanding droplet spread in clinical and training settings is paramount in maintaining productivity, while keeping patients and practitioners safe.
Objectives
We aimed to assess the effectiveness of a breath-guard and a face mask in reducing droplet spread within an eye clinic.
Methods
We performed a randomised trial of droplet spread using a fluorescein-based cough model to assess the efficacy of a ‘breath-guard’ and ‘face-mask’ to prevent the spread of droplets. The ‘cough’ spray was collected on calibrated paper targets. The sheets were photographed under blue light, with an orange filter on the camera; the position and size of the spots was measured with software originally developed for astronomy.
We performed 44 randomised coughs; 22 controls with no breath-guard or face-mask, 11 using breath-guard only and 11 with combined breath-guard and face-mask. We compared both the number of droplets detected and the area of drops on paper targets.
Results
The average number of droplets in the controls was 19,430 (SE 2691), the breath-guard group 80 (SE 19) droplets (P < 0.001); in the combined In the group the count was 5 (SE 2), a significant drop from shield only (P = 0.008). The mean areas of each target covered by spots for each group were 5.7 ± 0.857% (95% CI), 0.004 ± 0.000104% (95% CI) and 0.001 ± 0.0000627% (95% CI) respectively.
Conclusion
These results show that the breath-guard alone reduced the droplet count by 99.93%. Combining the breath-guard with a face-mask reduced the droplet count by over 99.98%. Breath-guards are widely used in clinics and this trial demonstrates that breath-guards with face-masks effectively block droplet spray.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.