There is currently no evidence that the intervertebral discs (IVDs) can respond positively to exercise in humans. Some authors have argued that IVD metabolism in humans is too slow to respond anabolically to exercise within the human lifespan. Here we show that chronic running exercise in men and women is associated with better IVD composition (hydration and proteoglycan content) and with IVD hypertrophy. Via quantitative assessment of physical activity we further find that accelerations at fast walking and slow running (2 m/s), but not high-impact tasks, lower intensity walking or static positions, correlated to positive IVD characteristics. These findings represent the first evidence in humans that exercise can be beneficial for the IVD and provide support for the notion that specific exercise protocols may improve IVD material properties in the spine. We anticipate that our findings will be a starting point to better define exercise protocols and physical activity profiles for IVD anabolism in humans.
Marrow adipose tissue (MAT) accumulation with normal aging impacts the bone, hemopoiesis, and metabolic pathways. We investigated whether exercise was associated with lower MAT, as measured by vertebral marrow fat fraction (VFF) on magnetic resonance imaging. A total of 101 healthy individuals (54 females) aged 25 to 35 years without spine or bone disease but with distinct exercise histories were studied. Long-distance runners (67 km/wk, n = 25) exhibited lower mean lumbar VFF (27.9% [8.6%] versus 33.5% [6.0%]; p = 0.0048) than non-sporting referents (n = 24). In habitual joggers (28 km/wk, n = 30), mean lumbar VFF was 31.3% (9.0%) (p = 0.22 versus referents) and 6.0 percentage points lower than referents at vertebrae T , T , and T (p ≤ 0.023). High-volume road cycling (275 km/wk, n = 22) did not impact VFF. 3D accelerations corresponding to faster walking, slow jogging, and high-impact activities correlated with lower VFF, whereas low-impact activities and sedentary time correlated with higher mean lumbar VFF (all p ≤ 0.05). Given an estimated adipose bone marrow conversion of 7% per decade of life, long distance runners, with 5.6 percentage points lower VFF, showed an estimated 8-year younger vertebral marrow adipose tissue phenotype. Regression analysis showed a 0.7 percentage point reduction in mean lumbar VFF with every 9.4 km/wk run (p = 0.002). This study presents the first evidence in humans or animals that specific volumes and types of exercise may influence the age-determined adipose marrow conversion and result in low MAT. These results identify a potentially modifiable risk factor for prevalent chronic conditions related to bone metabolism, hemopoietic production, and other metabolic functions with potential global health applications. © 2017 American Society for Bone and Mineral Research.
The World Health Organisation's (WHO) physical activity guidelines recommend 150min/week of moderate- to vigorous-intensity physical activity (MVPA) accumulated in 10 min bouts. To see whether people performing habitual exercise for recreation meet these guidelines, 25 long-distance runners [mean 67 km/wk], 25 joggers [mean 28 km/wk], and 20 sedentary adults wore an ActiGraph GT3X+ accelerometer for 7 days. Sedentary time and bouts were similar in runners and sedentary adults (p > 0.46). Sedentary adults performed 20 ± 16 min/day of MVPA (usual bout duration (W50%): 9.53 ± 3.45min), with joggers and runners performing 45 ± 31min (W50%: 16.92 ± 9.53min) and 83 ± 58min (W50%: 20.35 ± 8.85min), respectively (p ≤ 0.001 versus sedentary group). Data showed that 65% of the sedentary group, 32% of joggers and 4% of long-distance runners did not meet the WHO guideline for MVPA. Failure to meet the guideline was most prominent in, but not restricted to, runners who reported ≤50km running per week. Self-reported running does not ensure adults meet physical activity guidelines or offset daily sedentary behaviours. On the other hand, the sedentary group was very close in accumulating recommended bouts of MVPA in incidental activities. Future studies should assess whether modification of work and leisure physical activity would be more fruitful than encouraging recreational exercise per se in meeting physical activity guidelines.
Purpose To investigate whether quantitative T2-times depend on lumbar intervertebral disc (IVD) level. Methods The lumbar spine (Th12/L1-L5/S1) of 101 participants (53.5% female, 30.0[± 3.6]years, 173.5[± 9.6]cm and 69.9[± 13.4]kg), without history of back pain, was examined on a 3T scanner with sagittal T2-mapping. All IVDs were stratified according to Pfirrmann grade and lumbar level, with mean T2-time determined for the entire IVD volume and in five subregions of interests. Results Significant level-dependent T2-time differences were detected, both for the entire IVD volume and its subregions. For the entire IVD volume, Pfirrmann grade 2 IVDs displayed 9-18% higher T2-times in Th12/L1 IVDs compared to L2/ L3-L5/S1 IVDs (0.001 > p < 0.004) and significantly different T2-times in L1/L2-L2/L3 IVDs compared to most of the IVDs in the lower lumbar spine. In Pfirrmann grades 1, 3 and 4 IVDs, no significant level-dependent T2-time differences were observed for the entire IVD. More pronounced results were observed when comparing IVD subregions, with significant level-dependent differences also within Pfirrmann grade 1 and grade 3 IVDs. For example, in posterior IVD subregions mean T2-time was 80-82% higher in Th12/L1 compared to L3/L4-L4/L5 Pfirrmann grade 1 IVDs (p < 0.05) and 10-14% higher in L5/S1 compared to L3/L4-L4/L5 Pfirrmann grade 3 IVDs (0.02 > p < 0.001). Discussion Significant level-dependent T2-time differences within several Pfirrmann grades, both for the entire IVD volume and for multiple IVD subregions, were shown in this large cohort study. The T2-time differences between levels existed in both non-degenerated and degenerated IVDs. These findings show the importance of stratifying for lumbar level when quantitative IVD studies are performed using T2-mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.