Over a non-closed field, it is a common strategy to use separable algebras as invariants to distinguish algebraic and geometric objects. The most famous example is the deep connection between Severi-Brauer varieties and central simple algebras. For more general varieties, one might use endomorphism algebras of line bundles, of indecomposable vector bundles, or of exceptional objects in their derived categories.Using Galois cohomology, we describe a new invariant of reductive algebraic groups that captures precisely when this strategy will fail. Our main result characterizes this invariant in terms of coflasque resolutions of linear algebraic groups introduced by Colliot-Thélène. We determine whether or not this invariant is trivial for many fields. For number fields, we show it agrees with the Tate-Shafarevich group of the linear algebraic group, up to behavior at real places.
A well-known conjecture of Orlov asks whether the existence of a full exceptional collection implies rationality of the underlying variety. We prove this conjecture for arithmetic toric varieties over general fields. We also investigate a slight generalization of this conjecture, where the endomorphism algebras of the exceptional objects are allowed to be separable field extensions of the base field. We show this generalization is false by exhibiting a smooth, projective threefold over the the field of rational numbers that possesses a full étale-exceptional collection but not a rational point. The counterexample comes from twisting a non-retract rational variety with a rational point and full étaleexceptional collection by a torsor that is invisible to Brauer invariants. Along the way, we develop some tools for linearizing objects, including a group that controls linearizations.
We give a noncommutative geometric description of the internal Hom dgcategory in the homotopy category of dg-categories between two noncommutative projective schemes in the style of Artin-Zhang. As an immediate application, we give a noncommutative projective derived Morita statement along lines of Rickard and Orlov.F : D(Qcoh X) → D(Qcoh Y ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.