This document proposes a collection of simplified models relevant to the design of new-physics searches at the Large Hadron Collider (LHC) and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the 'Topologies for Early LHC Searches' workshop, held at SLAC in September
International audienceThis document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediation is discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementation are presented
We explore the feasibility and astrophysical consequences of a new long-range Uð1Þ gauge field (''dark electromagnetism'') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies & 10 À3 for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.
Recent observations from PAMELA, FERMI, and ATIC point to a new source of high energy cosmic rays. If these signals are due to annihilating dark matter, the annihilation cross section in the present day must be substantially larger than that necessary for thermal freeze-out in the early universe. A new force, mediated by a particle of mass O(100 MeV), leading to a velocity dependent annihilation cross section -a 'Sommerfeld enhancement' -has been proposed as a possible explanation. We point out that such models necessarily increase the dark matter (DM) self-scattering cross section, and use observational bounds on the amount of DM-DM scattering allowed in various astrophysical systems to place constraints on the mass and couplings of the light mediator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.