The emergence of affordable unmanned aerial systems (UAS) creates new opportunities to study fire behavior and ecosystem pattern—process relationships. A rotor-wing UAS hovering above a fire provides a static, scalable sensing platform that can characterize terrain, vegetation, and fire coincidently. Here, we present methods for collecting consistent time-series of fire rate of spread (RoS) and direction in complex fire behavior using UAS-borne NIR and Thermal IR cameras. We also develop a technique to determine appropriate analytical units to improve statistical analysis of fire-environment interactions. Using a hybrid temperature-gradient threshold approach with data from two prescribed fires in dry conifer forests, the methods characterize complex interactions of observed heading, flanking, and backing fires accurately. RoS ranged from 0–2.7 m/s. RoS distributions were all heavy-tailed and positively-skewed with area-weighted mean spread rates of 0.013–0.404 m/s. Predictably, the RoS was highest along the primary vectors of fire travel (heading fire) and lower along the flanks. Mean spread direction did not necessarily follow the predominant head fire direction. Spatial aggregation of RoS produced analytical units that averaged 3.1–35.4% of the original pixel count, highlighting the large amount of replicated data and the strong influence of spread rate on unit size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.