Asymptomatic and pauci‐symptomatic presentations of COVID‐19 along with restrictive testing protocols result in undetected COVID‐19 cases. Estimating undetected cases is crucial to understanding the true severity of the outbreak. We introduce a new hierarchical disease dynamics model based on the
N
‐mixtures hidden population framework. The new models make use of three sets of disease count data per region: reported cases, recoveries and deaths. Treating the first two as under‐counted through binomial thinning, we model the true population state at each time point by partitioning the diseased population into the active, recovered and died categories. Both domestic spread and imported cases are considered. These models are applied to estimate the level of under‐reporting of COVID‐19 in the Northern Health Authority region of British Columbia, Canada, during 30 weeks of the provincial recovery plan. Parameter covariates are easily implemented and used to improve model estimates. We compare two distinct methods of model‐fitting for this case study: (1) maximum likelihood estimation, and (2) Bayesian Markov chain Monte Carlo. The two methods agreed exactly in their estimates of under‐reporting rate. When accounting for changes in weekly testing volumes, we found under‐reporting rates varying from 60.2% to 84.2%.
We address two computational issues common to open-population
N
-mixture models, hidden integer-valued autoregressive models, and some hidden Markov models. The first issue is computation time, which can be dramatically improved through the use of a fast Fourier transform. The second issue is tractability of the model likelihood function for large numbers of hidden states, which can be solved by improving numerical stability of calculations. As an illustrative example, we detail the application of these methods to the open-population
N
-mixture models. We compare computational efficiency and precision between these methods and standard methods employed by state-of-the-art ecological software. We show faster computing times (a
to
times speed improvement for population size upper bounds of 500 and 1000, respectively) over state-of-the-art ecological software for
N
-mixture models. We also apply our methods to compute the size of a large elk population using an
N
-mixture model and show that while our methods converge, previous software cannot produce estimates due to numerical issues. These solutions can be applied to many ecological models to improve precision when logs of sums exist in the likelihood function and to improve computational efficiency when convolutions are present in the likelihood function.
Supplementary materials accompanying this paper appear online.
Supplementary materials for this article are available at 10.1007/s13253-022-00509-y.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.