The roles of aberrant expression of constitutively active ALK chimeric proteins in the pathogenesis of anaplastic large-cell lymphoma (ALCL) have been well defined; nevertheless, the notion that ALK is a molecular target for the therapeutic modulation of ALK ؉ ALCL has not been validated thus far. Select fused pyrrolocarbazole (FP)-derived small molecules with ALK inhibitory activity were used as pharmacologic tools to evaluate whether functional ALK is essential for the prolifera- IntroductionChromosomal translocations occur frequently in a select group of human cancers, including most lymphomas, leukemias, and sarcomas. Individual translocations have shown a high degree of specificity for particular cancer types and the presence of a particular translocation often correlates well with clinical behavior and outcome for specific types of cancer. 1 Consequently, therapies directed at molecular targets dysregulated by tumor-specific genetic aberrations will potentially provide more effective and less toxic therapies than conventional chemotherapy. 1,2 Anaplastic large-cell lymphomas (ALCLs) comprise a group of non-Hodgkin lymphomas (NHLs) that are usually of T-cell origin and often present with extranodal disease, especially the skin, and are characterized by the expression of the CD30/Ki-1 antigen. Roughly 2500 to 3000 new cases of ALCLs are diagnosed in the United States each year and 50% to 60% of these ALCLs are associated with a specific t(2;5) (p23;q35) chromosome translocation. 4,5 The genes altered in the t(2;5) translocation contain the N-terminal portion of nucleophosmin (NPM) gene, a nuclear phosphoprotein, fused to the catalytic domain of anaplastic lymphoma kinase (ALK) gene. ALK is a cell-membrane-spanning receptor tyrosine kinase and a member of the insulin receptor superfamily. Although the precise physiologic function and regulation of ALK have not been well defined, the NPM-ALK fusion gene encodes for an 80-kDa NPM-ALK chimeric oncoprotein with constitutively active ALK tyrosine kinase activity, which plays a key role in lymphomagenesis by the aberrant phosphorylation of multiple intracellular substrates downstream of NPM-ALK. 4,5 Subsequently, other fusion partners of ALK were also reported in ALCL, and dysregulated expression and constitutive activation of the ALK protein was demonstrated in approximately 60% to 70% of ALCLs, termed ALK ϩ lymphomas. 4,[6][7][8] Preclinical experimental data have demonstrated that the aberrant expression of constitutively active ALK is directly implicated in the pathogenesis of ALCL and that ALK down-regulation or inhibition of ALK-mediated pathways can markedly impair the growth of ALK ϩ lymphoma cells. 9-15 Currently there is no optimal therapeutic regimen for ALK ϩ ALCL. Doxorubicin-based combination chemotherapy has limited effectiveness, resulting in a substantial number of patients with ALK ϩ ALCL with a poor outcome, either failing to enter remission or relapsing within a few months from the start of treatment. 3 Thus, optimal and more effective therapeu...
Penciclovir (PCV), an antiherpesvirus agent in the same class as acyclovir (ACV), is phosphorylated in herpes simplex virus (HSV)-infected cells by the viral thymidine kinase (TK).Resistance to ACV has been mapped to mutations within either the TK or the DNA polymerase gene. An identical activation pathway, the similarity in mode of action, and the invariant cross-resistance of TK-negative mutants argue that the mechanisms of resistance to PCV and ACV are likely to be analogous. A total of 48 HSV type 1 (HSV-1) and HSV-2 isolates were selected after passage in the presence of increasing concentrations of PCV or ACV in MRC-5 cells. Phenotypic analysis suggested these isolates were deficient in TK activity. Moreover, sequencing of the TK genes from ACV-selected mutants identified two homopolymeric G-C nucleotide stretches as putative hot spots, thereby confirming previous reports examining Acv r clinical isolates. Surprisingly, mutations identified in PCV-selected mutants were generally not in these regions but distributed throughout the TK gene and at similar frequencies of occurrence within A-T or G-C nucleotides, regardless of virus type. Furthermore, HSV-1 isolates selected in the presence of ACV commonly included frameshift mutations, while PCV-selected HSV-1 mutants contained mostly nonconservative amino acid changes. Data from this panel of laboratory isolates show that Pcv r mutants share cross-resistance and only limited sequence similarity with HSV mutants identified following ACV selection. Subtle differences between PCV and ACV in the interaction with viral TK or polymerase may account for the different spectra of genotypes observed for the two sets of mutants.The introduction of penciclovir [PCV;9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine] and its prodrug, famciclovir, (FCV), resulted in the use of antivirals alternative to acyclovir (ACV) for treatment of herpes simplex virus (HSV) infections. Biochemical studies have indicated that PCV, like ACV, is phosphorylated by the viral thymidine kinase (TK) to a monophosphate and subsequently converted by cellular enzymes to a triphosphate, which inhibits the HSV DNA polymerase (Pol) (44). Although PCV and ACV have identical activation pathways and similar modes of action (14, 44), and the frequencies with which resistance in HSV arises to PCV and ACV in cell culture are identical (36), the affinities and therefore the fine molecular interactions of PCV, ACV, and their triphosphates with TK and Pol differ (14). The last point raises the possibility that drug-resistant mutants selected by these antiviral agents may differ.Resistance to acyclovir typically arises by a single mutation in either the TK or Pol gene (11,23,29). The viral TK, unlike DNA polymerase, is not essential for virus replication in cell culture (13), although in vivo analyses implicate it in HSV virulence, pathogenicity, and reactivation from latency (9,15,20,41). Mutations in HSV TK are the most common causes of clinical resistance to ACV (7,34), and the majority of mutants completely lac...
Analogues structurally related to anaplastic lymphoma kinase (ALK) inhibitor 1 were optimized for metabolic stability. The results from this endeavor not only led to improved metabolic stability, pharmacokinetic parameters, and in vitro activity against clinically derived resistance mutations but also led to the incorporation of activity for focal adhesion kinase (FAK). FAK activation, via amplification and/or overexpression, is characteristic of multiple invasive solid tumors and metastasis. The discovery of the clinical stage, dual FAK/ALK inhibitor 27b, including details surrounding SAR, in vitro/in vivo pharmacology, and pharmacokinetics, is reported herein.
A series of novel 7-amino-1, 3,4,5-tetrahydrobenzo[b]azepin-2-one derivatives within the diaminopyrimidine class of kinase inhibitors were identified that target anaplastic lymphoma kinase (ALK). These inhibitors are potent against ALK in an isolated enzyme assay and inhibit autophosphorylation of the oncogenic fusion protein NPM-ALK in anaplastic large cell lymphoma (ALCL) cell lines. The lead inhibitor 15, which incorporates a bicyclo[2.2.1]hept-5-ene ring system in place of an aryl moiety, activates the pro-apoptotic caspases (3 and 7) and displays selective cytotoxicity against ALK-positive ALCL cells. Furthermore, 15 provides more than 40-fold selectivity against the structurally related insulin receptor, is orally bioavailable in multiple species, and displays in vivo antitumor efficacy when dosed orally in ALK-positive ALCL tumor xenografts in Scid mice.
Anaplastic lymphoma kinase (ALK) is constitutively activated in a number of human cancer types due to chromosomal translocations, point mutations, and gene amplification and has emerged as an excellent molecular target for cancer therapy. Here we report the identification and preclinical characterization of CEP-28122, a highly potent and selective orally active ALK inhibitor. CEP-28122 is a potent inhibitor of recombinant ALK activity and cellular ALK tyrosine phosphorylation. It induced concentration-dependent growth inhibition/cytotoxicity of ALK-positive anaplastic large-cell lymphoma (ALCL), non-small cell lung cancer (NSCLC), and neuroblastoma cells, and displayed dose-dependent inhibition of ALK tyrosine phosphorylation in tumor xenografts in mice, with substantial target inhibition (>90%) for more than 12 hours following single oral dosing at 30 mg/kg. Dose-dependent antitumor activity was observed in ALK-positive ALCL, NSCLC, and neuroblastoma tumor xenografts in mice administered CEP-28122 orally, with complete/near complete tumor regressions observed following treatment at doses of 30 mg/kg twice daily or higher. Treatment of mice bearing Sup-M2 tumor xenografts for 4 weeks and primary human ALCL tumor grafts for 2 weeks at 55 or 100 mg/kg twice daily led to sustained tumor regression in all mice, with no tumor reemergence for more than 60 days postcessation of treatment. Conversely, CEP-28122 displayed marginal antitumor activity against ALK-negative human tumor xenografts under the same dosing regimens. Administration of CEP-28122 was well tolerated in mice and rats. In summary, CEP-28122 is a highly potent and selective orally active ALK inhibitor with a favorable pharmaceutical and pharmacokinetic profile and robust and selective pharmacologic efficacy against ALK-positive human cancer cells and tumor xenograft models in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.