Skates (class Chondrichthyes; subclass Elasmobranchii; order Rajiformes; family Rajidae) comprise one quarter of extant chondrichthyans, yet have received little attention in the scientific literature likely due to their relatively low economic value and difficulties in species identification. The absence of species‐specific information on catch, life history and migration of skates has often precluded the development of single‐species stock assessments and led to the use of cursory multispecies assessments, which lack the ability to track species‐specific catch and abundance trends. This has resulted in undetected local extirpations, as has been previously reported for common (Dipturus batis, Rajidae), white (Rostroraja alba, Rajidae) and long‐nose (Dipturus oxyrhinchus, Rajidae) skates in the Irish Sea. Here, we (a) use case studies to illustrate how the perception of skate population structure and stock status has historically been masked through multispecies assessment and management practices, (b) review current information on the movement of skates and identify gaps in knowledge, and (c) identify biases associated with the use of various tagging technologies, which have confounded our understanding of movement and migration ecology of skates. Considering that over 40% of extant Rajidae species are listed as “Data Deficient” by the International Union for Conservation of Nature, we illustrate a critical need to broaden the current understanding of skate life history, movement and migration ecology by providing recommendations on the further application of electronic tags and biogeochemical natural tags in movement studies and highlight the benefits that studies using these approaches have for novel management frameworks.
Following intense overfishing in the 1970s, the western stock of Atlantic bluefin tuna (Thunnus thynnus) experienced a long period of depressed abundance, which has been attributed to failure of the population to periodically produce large numbers of juveniles, the western stock mixing with the more highly exploited eastern stock (fisheries in the Northeast Atlantic Ocean and Mediterranean Sea), and regime shift in the population's ecosystem resulting in lower replacement rates. To evaluate the presence of relatively strong years of juvenile production, we analyzed age structure from a recent sample of otoliths (ear stones) collected from the western stock (2011-2013, North Carolina, U.S.A., winter fishery). Mixing levels for the recent sample were analyzed using otolith stable isotopes to test whether age structure might be biased through immigration of eastern stock bluefin tuna. Age structure from historical samples collected from United States and Canadian fisheries (1975-1981) was compared with more recent samples (1996-2007) to examine whether demographic changes had occurred to the western stock that might have disrupted juvenile production. Relatively high juvenile production occurred in 2003, 2005, and 2006. Otolith stable isotope analysis showed that these recruitments were mostly of western stock origin. However, these high recruitments were >2-fold less than historical recruitment. We found substantial age truncation in the sampled fisheries. Half the historical sample was >20 years old (mean age = 20.1 [SD 3.7]; skewness = -0.3), whereas <5% of the recent sample was >20 years old (mean age = 13.4 [SD 3.8]; skewness = 1.3). Loss of age structure is consistent with changes in fishing selectivity and trends in the stock assessment used for management. We propose that fishing, as a forcing variable, brought about a threshold shift in the western stock toward lower biomass and production, a shift that emulates the regime shift hypothesis. An abbreviated reproductive life span compromised resilience by reducing the period over which adults spawn and thereby curtailing the stock's ability to sample year-to-year variability in conditions that favor offspring survival (i.e., storage effect). Because recruitment dynamics by the western stock exhibit threshold dynamics, returning it to a higher production state will entail greater reductions in exploitation rates.
Fisheries scientists and managers must track rapid shifts in fish spatial distribution to mitigate stakeholder conflict and optimize survey designs, and these spatial shifts result in part from animal movement. Information regarding animal movement can be obtained from selection experiments, tagging studies, flux through movement gates (e.g. acoustic arrays), fishery catch-per-unit effort (CPUE), resource surveys and genetic/chemical markers. However, there are few accessible approaches to combine these data types while accounting for spatially correlated residual patterns. We therefore discuss a movement model involving diffusion (random movement), taxis (movement towards preferred habitat) and advection (passive drift following ocean currents). We specifically outline how these movement processes can be fitted to data while discretizing space and time and estimating non-linear habitat preferences using environmental layers as well as spatial process errors. Finally, we introduce an R package, ATM, by fitting the model to bottom trawl survey, longline fishery and tagging data for Pacific cod (Gadus macrocephalus, Gadidae) in the Bering Sea during winter/summer seasons from 1982 to 2019. Combining data types predicts an increasing proportion of cod residing in the northern Bering Sea from 2013 to 2019, and estimates are informative in a recent stock assessment model. We fit sensitivity analyses by dropping tag, survey or fishery data, and this analysis shows that tagging data are necessary to identify diffusion rates, while survey data are informative about movement among biogeographic strata. This "hybrid" species distribution model can help explain poleward movement, project distributions under future climate conditions and evaluate alternative tag-deployment scenarios to optimize tagging designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.