We consider the thermal relaxation of a particle in a piecewise constant potential landscape subject to thermal fluctuations in the overdamped limit. We study the connection between the occurrence of the Mpemba effect, the presence of metastable states, and phase transitions as a function of the potential. We find that the Mpemba effect exists even in cases without metastable states. The borders of the areas where the effect happens correspond to eigenvalue crossings, eigenvector changes of direction, or phase transitions. Finally, we discuss the topological aspects of the strong Mpemba effect and propose using topology to search for the Mpemba effect in a physical system.
Assessment of Unmanned Aerial Systems and lidar for the Utility Vegetation Management of Electrical Distribution Rights-of-WaysMatthew R. Walker Utility Vegetation Management (UVM) is often the largest maintenance expense for many utilities. However, with advances in Unmanned Aerial Systems (UAS; or more commonly, "drones") and lidar technologies, vegetation managers may be able to more rapidly and accurately identify vegetation threats to critical infrastructures. The goal of this study was to assess the utility of Geodetics' UAS-lidar system for vegetation threat assessment for 1.6 km of a distribution electric circuit. We investigated factors which contribute to accurate tree crown detection and segmentation of trees from within an UAS-lidar derived point cloud, and the factors which contribute to accurate tree risk assessment. The study adapted the International Society of Arboriculture's (ISA) tree risk assessment methodology to the application of remotely sensed tree inventory. We utilized the lidar detected and segmented tree crowns for tree risk analysis based upon each tree's height, elevation, and location in relation to the electrical infrastructure. The individual tree detection and segmentation results show that our canopy type parameter and the routine used for field-and lidar-derived tree matching to have the largest effect on the classification agreement of field and lidar derived datasets. The Threat Detection classification also demonstrated a significant effect due to our canopy modeling parameter, where single canopy models possessed higher average Kappa agreement statistic and divided canopy models detected a larger number of threats on average. Ultimately, our best model was capable of the correct detection, segmentation, matching, and classification of half of the field trees which were determined to be vegetation threats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.