BackgroundKilovoltage Intrafraction Monitoring (KIM) is a method which determines the three‐dimensional position of the prostate from two‐dimensional kilovoltage (kV) projections taken during linac based radiotherapy treatment with real‐time feedback. Rectal displacement devices (RDDs) allow for improved rectal dosimetry during prostate cancer treatment. This study used KIM to perform a preliminary investigation of prostate intrafraction motion observed in patients with an RDD in place.MethodsTen patients with intermediate to high‐risk prostate cancer were treated with a Rectafix RDD in place during two boost fractions of 9.5–10 Gy delivered using volumetric modulated arc therapy (VMAT) on Clinac iX and Truebeam linacs. Two‐dimensional kV projections were acquired during treatment. KIM software was used following treatment to determine the displacement of the prostate over time. The displacement results were analyzed to determine the percentage of treatment time the prostate spent within 1 mm, between 1 and 2 mm, between 2 and 3 mm and greater than 3 mm from its initial position.Results KIM successfully measured displacement for 19 prostate stereotactic boost fractions. The prostate was within 1 mm of its initial position for 84.8%, 1–2 mm for 14%, 2–3 mm 1.2% and ≥3 mm only 0.4% of the treatment time.ConclusionsIn this preliminary study using KIM, KIM was successfully used to measure prostate intrafraction motion, which was found to be small in the presence of a rectal displacement device.Trial registrationThe Hunter New England Human Research Ethics Committee reference number is 14/08/20/3.01.
IntroductionHigh rectal doses are associated with increased toxicity. A rectal displacement device (RDD) reduces rectal dose in prostate stereotactic body radiation therapy (SBRT). This study investigates any dosimetric difference between two methods of rectal displacement (Rectafix and SpaceOAR) for prostate SBRT.MethodsRectal dosimetry of 45 men who received SBRT within the PROMETHEUS trial was retrospectively examined, across two radiation therapy centres using the two RDD's. Men received a total dose (TD) of 19 or 20 Gy in two fractions followed by 46 Gy in 23 fractions. Centre 1 contributed 16 Rectafix and 10 SpaceOAR patients. Centre 2 contributed 19 Rectafix patients. Rectal dose volume histogram (DVH) data were recorded as a TD percentage at the following volume intervals; V1%, V2%, V5%, V10% and then 10% increments to V80%. As only one centre employed both RDD's, three sequential rectal dosimetry comparisons were performed; (1) centre 1 Rectafix versus centre 1 SpaceOAR; (2) centre 1 Rectafix versus centre 2 Rectafix and (3) centre 1+ centre 2 Rectafix versus centre 1 SpaceOAR.ResultsIn comparison (1) Rectafix demonstrated lower mean doses at 9 out of 11 measured intervals (P = 0.0012). Comparison (2) demonstrated a moderate difference with centre 2 plans producing slightly lower rectal doses (P = 0.013). Comparison (3) further demonstrated that Rectafix returned lower mean doses than SpaceOAR (P < 0.001). Although all dose levels were in favour of Rectafix, in absolute terms differences were small (2.6–9.0%).ConclusionsIn well‐selected prostate SBRT patients, Rectafix and SpaceOAR RDD's provide approximately equivalent rectal sparing.
BackgroundMOSFET dosimetry is a method that has been used to measure in-vivo doses during brachytherapy treatments and during linac based radiotherapy treatment. Rectal displacement devices (RDDs) allow for safe dose escalation for prostate cancer treatment. This study used dual MOSkin detectors to assess real-time in vivo rectal wall dose in patients with an RDD in place during a high dose prostate stereotactic body radiation therapy (SBRT) boost trial.MethodsThe PROMETHEUS study commenced in 2014 and provides a prostate SBRT boost dose with a RDD in place. Twelve patients received two boost fractions of 9.5–10 Gy each delivered to the prostate with a dual arc volumetric modulated arc therapy (VMAT) technique. Two MOSkins in a face-to-face arrangement (dual MOSkin) were used to decrease angular dependence. A dual MOSkin was attached to the anterior surface of the Rectafix and read out at 1 Hz during each treatment. The planned dose at each measurement point was exported from the planning system and compared with the measured dose. The root mean square error normalised to the total planned dose was calculated for each measurement point and treatment arc for the entire course of treatment.ResultsThe average difference between the measured and planned doses over the whole course of treatment for all arcs measured was 9.7% with a standard deviation of 3.6%. The cumulative MOSkin reading was lower than the total planned dose for 64% of the arcs measured. The average difference between the final measured and final planned doses for all arcs measured was 3.4% of the final planned dose, with a standard deviation of 10.3%.ConclusionsMOSkin detectors were an effective tool for measuring dose delivered to the anterior rectal wall in real time during prostate SBRT boost treatments for the purpose of both ensuring the rectal doses remain within acceptable limits during the treatment and for the verification of final rectal doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.