We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a firstorder knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a first-order formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudo-likelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach.
Abstract. Though research on the Semantic Web has progressed at a steady pace, its promise has yet to be realized. One major difficulty is that, by its very nature, the Semantic Web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each source. We cannot expect each user to know the trustworthiness of each source, nor would we want to assign top-down or global credibility values due to the subjective nature of trust. We tackle this problem by employing a web of trust, in which each user maintains trusts in a small number of other users. We then compose these trusts into trust values for all other users. The result of our computation is not an agglomerate "trustworthiness" of each user. Instead, each user receives a personalized set of trusts, which may vary widely from person to person. We define properties for combination functions which merge such trusts, and define a class of functions for which merging may be done locally while maintaining these properties. We give examples of specific functions and apply them to data from Epinions and our BibServ bibliography server. Experiments confirm that the methods are robust to noise, and do not put unreasonable expectations on users. We hope that these methods will help move the Semantic Web closer to fulfilling its promise.
Viral marketing takes advantage of networks of influence among customers to inexpensively achieve large changes in behavior. Our research seeks to put it on a firmer footing by mining these networks from data, building probabilistic models of them, and using these models to choose the best viral marketing plan. Knowledge-sharing sites, where customers review products and advise each other, are a fertile source for this type of data mining. In this paper we extend our previous techniques, achieving a large reduction in' computational cost, and apply them to data from a knowledge-sharing site. We optimize the amount of marketing funds spent on each customer, rather than just making a binary decision on whether to market to him. We take into account the fact that knowledge of the network is partial, and that gathering that knowledge can itself have a cost. Our results show the robustness and utility of our approach.
When translating natural language questions into SQL queries to answer questions from a database, contemporary semantic parsing models struggle to generalize to unseen database schemas. The generalization challenge lies in (a) encoding the database relations in an accessible way for the semantic parser, and (b) modeling alignment between database columns and their mentions in a given query. We present a unified framework, based on the relation-aware self-attention mechanism, to address schema encoding, schema linking, and feature representation within a text-to-SQL encoder. On the challenging Spider dataset this framework boosts the exact match accuracy to 57.2%, surpassing its best counterparts by 8.7% absolute improvement.Further augmented with BERT, it achieves the new state-of-the-art performance of 65.6% on the Spider leaderboard. In addition, we observe qualitative improvements in the model's understanding of schema linking and alignment. Our implementation will be open-sourced at https://github.com/Microsoft/rat-sql. * Equal contribution. Order decided by a coin toss. † Work done during an internship at Microsoft Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.