HLA-B27 transgenic rats and strains of HLA-B27-transgenic β2-microglobulin (β2m)-deficient mice develop a multisystem inflammatory disease affecting the joints, skin, and bowel with strong similarity to human spondyloarthritis. We show that HLA-B27 transgenic mice and rats express HC10-reactive, β2m-free HLA-B27 homodimers (B272) and multimers, both intracellularly and at the cell surface of leukocytes, including rat dendritic cells. Fluorescent-labeled tetrameric complexes of HLA-B27 homodimers (B272 tetramers) bind to populations of lymphocytes, monocytes, and dendritic cells. The murine (and probably rat) paired Ig-like receptors (PIRs) are ligands for B272. Thus, B272 tetramers stain RBL cells transfected with murine activating PIR-A4 and inhibitory PIR-B receptors. Murine PIR-A and -B can be immunoprecipitated from the RAW264.7 macrophage cell line, and murine PIR-A can be immunoprecipitated from the J774.A1 line using B272. B272 tetramer staining corresponds to the distribution of PIR expression on lymphoid and myeloid cells and on murine macrophage cell lines. B272 can induce TNF-α release from the J774.A1 macrophage cell line. The binding of B272 to PIR is inhibited by HC10, an mAb that ameliorates arthritis in HLA-B27+ β2m−/− mice. The expression and PIR recognition of B272 could explain the pathogenesis of rodent spondyloarthritis.
The strong association of HLA B27 with spondyloarthropathies contrasts strikingly with most autoimmune diseases, which are HLA class II associated and thought to be mediated by CD4+ T lymphocytes. By introducing a human-derived HLA B27-restricted TCR into HLA B27 transgenic mice, we have obtained a functional TCR transgenic model, GRb, dependent on HLA B27 for response. Surprisingly, HLA B27 supported CD4+ as well as CD8+ T cell responses in vivo and in vitro. Further, HLA B27-restriced CD4+ T cells were capable of differentiation into a range of Th1 and Th2 T cell subsets with normal patterns of cytokine expression. The transgenic T cells were also able to enhance clearance of recombinant vaccinia virus containing influenza nucleoprotein in vivo. This is the first description of a human HLA class I-restricted TCR transgenic line. The existence of CD4+ MHC class I-restricted T cells has significant implications for immune regulation in autoimmunity and, in particular, in HLA B27-associated arthritis. We believe that this model provides a novel system for the study of unusual T cell behavior in vivo.
V(D)J genomic recombination joins single gene segments to encode an extensive repertoire of antigen receptor specificities in T and B lymphocytes. This process initiates with double-stranded breaks adjacent to conserved recombination signal sequences that contain either 12-or 23-nucleotide spacer regions. Only recombination between signal sequences with unequal spacers results in productive coding genes, a phenomenon known as the ''12/23 rule.'' Here we present two novel genomic tools that allow the capture and analysis of immune locus rearrangements from whole thymic and splenic tissues using second-generation sequencing. Further, we provide strong evidence that the 12/23 rule of genomic recombination is frequently violated under physiological conditions, resulting in unanticipated hybrid recombinations iñ 10% of Tcra excision circles. Hence, we demonstrate that strict adherence to the 12/23 rule is intrinsic neither to recombination signal sequences nor to the catalytic process of recombination and propose that nonclassical excision circles are liberated during the formation of antigen receptor diversity.
Objective: Myalgic Encephalomyelitis (ME; sometimes referred to as Chronic Fatigue Syndrome or CFS) is a chronic disease without laboratory test, detailed aetiological understanding or effective therapy. Its symptoms are diverse, but it is distinguished from other fatiguing illnesses by the experience of post-exertional malaise, the worsening of symptoms even after minor physical or mental exertion. Its frequent onset after infection might indicate that it is an autoimmune disease or that it arises from abnormal T-cell activation. Results: To test this hypothesis, we sequenced the genomic loci of a/d, b and g T-cell receptors (TCR) from 40 human blood samples from each of four groups: severely affected people with ME/CFS; mildly or moderately affected people with ME/CFS; people diagnosed with Multiple Sclerosis, as disease controls; and, healthy controls. Seeking to automatically classify these individuals’ samples by their TCR repertoires, we applied P-SVM, a machine learning method. However, despite working well on a simulated data set, this approach did not partition samples into the four subgroups, beyond what was expected by chance alone. Our findings do not support the hypothesis that blood samples from people with ME/CFS frequently contain altered T-cell receptor diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.