Through the European Research Initiative on chronic lymphocytic leukemia (CLL) (ERIC), we screened 3490 patients with CLL for mutations within the NOTCH1 (n=3334), SF3B1 (n=2322), TP53 (n=2309), MYD88 (n=1080) and BIRC3 (n=919) genes, mainly at diagnosis (75%) and before treatment (>90%). BIRC3 mutations (2.5%) were associated with unmutated IGHV genes (U-CLL), del(11q) and trisomy 12, whereas MYD88 mutations (2.2%) were exclusively found among M-CLL. NOTCH1, SF3B1 and TP53 exhibited variable frequencies and were mostly enriched within clinically aggressive cases. Interestingly, as the timespan between diagnosis and mutational screening increased, so too did the incidence of SF3B1 mutations; no such increase was observed for NOTCH1 mutations. Regarding the clinical impact, NOTCH1 mutations, SF3B1 mutations and TP53 aberrations (deletion/mutation, TP53ab) correlated with shorter time-to-first-treatment (P<0.0001) in 889 treatment-naive Binet stage A cases. In multivariate analysis (n=774), SF3B1 mutations and TP53ab along with del(11q) and U-CLL, but not NOTCH1 mutations, retained independent significance. Importantly, TP53ab and SF3B1 mutations had an adverse impact even in U-CLL. In conclusion, we support the clinical relevance of novel recurrent mutations in CLL, highlighting the adverse impact of SF3B1 and TP53 mutations, even independent of IGHV mutational status, thus underscoring the need for urgent standardization/harmonization of the detection methods.
Key Points• This is the first study to validate the importance of NOTCH1 and SF3B1 gene mutations in the context of a randomized, prospective clinical trial.• Mutations in both genes are independent prognostic biomarkers, and therefore have clinical utility in the accurate risk-adapted stratification of CLL patients. Continuing Medical Education onlineThis activity has been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education through the joint sponsorship of Medscape, LLC and the American Society of Hematology. Medscape, LLC is accredited by the ACCME to provide continuing medical education for physicians. Medscape, LLC designates this Journal-based CME activity for a maximum of 1.0 AMA PRA Category 1 Credit(s) ™ . Physicians should claim only the credit commensurate with the extent of their participationin the activity. All other clinicians completing this activity will be issued a certificate of participation. To participate in this journal CME activity: (1) review the learning objectives and author disclosures; (2) study the education content; (3) take the post-test with a 70% minimum passing score and complete the evaluation at http://www.medscape.org/journal/blood; and (4) view/print certificate. For CME questions, see page 566. Disclosures Associate Editor John G. Gribben served as an advisor or consultant for Celgene and Roche and as a speaker or a member of a speakers bureau for Roche, Jensen, and Celgene. The authors and CME questions author Laurie Barclay, freelance writer and reviewer, Medscape, LLC, declare no competing financial interests. For personal use only. on May 9, 2018. by guest www.bloodjournal.org From Continuing Medical Education online Learning objectivesUpon completion of this activity, participants will be able to:1. Describe the frequency of NOTCH1 and SF3B1 mutations in patients with chronic lymphocytic leukemia (CLL), and their correlations with other genetic markers.2. Describe survival in CLL patients with NOTCH1 mutations, and the prognostic value of this mutation. 3. Describe survival in CLL patients with SF3B1 mutations, and the prognostic value of this mutation.
Purpose: Mounting evidence supports the clinical significance of gene mutations and immunogenetic features in common mature B-cell malignancies.Experimental Design: We undertook a detailed characterization of the genetic background of splenic marginal zone lymphoma (SMZL), using targeted resequencing and explored potential clinical implications in a multinational cohort of 175 patients with SMZL.Results: We identified recurrent mutations in TP53 (16%), KLF2 (12%), NOTCH2 (10%), TNFAIP3 (7%), MLL2 (11%), MYD88 (7%), and ARID1A (6%), all genes known to be targeted by somatic mutation in SMZL. KLF2 mutations were early, clonal events, enriched in patients with del(7q) and IGHV1-2 Ã 04 B-cell receptor immunoglobulins, and were associated with a short median time to first treatment (0.12 vs. 1.11 years; P ¼ 0.01).In multivariate analysis, mutations in NOTCH2 [HR, 2.12; 95% confidence interval (CI), 1.02-4.4; P ¼ 0.044] and 100% germline IGHV gene identity (HR, 2.19; 95% CI, 1.05-4.55; P ¼ 0.036) were independent markers of short time to first treatment, whereas TP53 mutations were an independent marker of short overall survival (HR, 2.36; 95 % CI, 1.08-5.2; P ¼ 0.03). Conclusions:We identify key associations between gene mutations and clinical outcome, demonstrating for the first time that NOTCH2 and TP53 gene mutations are independent markers of reduced treatment-free and overall survival, respectively.
Langerhans cells (LC) can prime tolerogenic as well as immunogenic responses in skin, but the genomic states and transcription factors (TF) regulating these context-specific responses are unclear. Bulk and single-cell transcriptional profiling demonstrates that human migratory LCs are robustly programmed for MHC-I and MHC-II antigen presentation. Chromatin analysis reveals enrichment of ETS-IRF and AP1-IRF composite regulatory elements in antigen-presentation genes, coinciding with expression of the TFs, PU.1, IRF4 and BATF3 but not IRF8. Migration of LCs from the epidermis is accompanied by upregulation of IRF4, antigen processing components and co-stimulatory molecules. TNF stimulation augments LC cross-presentation while attenuating IRF4 expression. CRISPR-mediated editing reveals IRF4 to positively regulate the LC activation programme, but repress NF2EL2 and NF-kB pathway genes that promote responsiveness to oxidative stress and inflammatory cytokines. Thus, IRF4-dependent genomic programming of human migratory LCs appears to enable LC maturation while attenuating excessive inflammatory and immunogenic responses in the epidermis.
Background-Prenatal and infant acetaminophen exposure has been associated with an increased risk of childhood asthma phenotypes. Demonstration of biologically plausible interactions between these exposures and maternal and child antioxidant gene polymorphisms would strengthen causal inference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.