Medicine, environmental monitoring, and security are application areas for miniaturized, portable sensing systems. The emerging integration of sensors with other components (electronic, photonic, fluidic) is moving sensing toward higher levels of portability through the realization of self-contained chip scale sensing systems. Planar optical sensors, and in particular, microresonator sensors, are attractive components for chip scale integrated sensing systems because they are small, have high sensitivity, can be surface customized, and can be integrated singly or in arrays in a planar format with other components using conventional semiconductor fabrication technologies. This paper will focus on the progress and prospects for the integration of microresonator sensors at the chip scale with photonic input/output components and with sample preparation microfluidics, toward self-contained, portable sensing systems.
We demonstrate an electrolyte-based voltage tunable vanadium dioxide (VO2) memory metasurface. Large spatial scale, low voltage, non-volatile switching of terahertz (THz) metasurface resonances is achieved through voltage application using an ionic gel to drive the insulator-to-metal transition in an underlying VO2 layer. Positive and negative voltage application can selectively tune the metasurface resonance into the “off” or “on” state by pushing the VO2 into a more conductive or insulating regime respectively. Compared to graphene based control devices, the relatively long saturation time of resonance modification in VO2 based devices suggests that this voltage-induced switching originates primarily from electrochemical effects related to oxygen migration across the electrolyte–VO2 interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.