Treatment of injured donor lungs ex vivo to accelerate organ recovery and ameliorate reperfusion injury could have a major impact in lung transplantation.We have recently demonstrated a feasible technique for prolonged (12 h) normothermic ex vivo lung perfusion (EVLP). This study was performed to examine the impact of prolonged EVLP on ischemic injury. Pig donor lungs were cold preserved in Perfadex R for 12 h and subsequently divided into two groups: cold static preservation (CSP) or EVLP at 37• C with Steen TM solution for a further 12 h (total 24 h preservation). Lungs were then transplanted and reperfused for 4 h. EVLP preservation resulted in significantly better lung oxygenation (PaO 2 531 ± 43 vs. 244 ± 49 mmHg, p < 0.01) and lower edema formation rates after transplantation. Alveolar epithelial cell tight junction integrity, evaluated by zona occludens-1 protein staining, was disrupted in the cell membranes after prolonged CSP but not after EVLP. The maintenance of integrity of barrier function during EVLP translates into significant attenuation of reperfusion injury and improved graft performance after transplantation. Integrity of functional metabolic pathways during normothermic perfusion was confirmed by effective gene transfer and GFP protein synthesis by lung alveolar cells. In conclusion, EVLP prevents ongoing injury associated with prolonged ischemia and accelerates lung recovery.
Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1 levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.