The hedgehog (HH) signaling pathway plays an essential role in the Drosophila ovary, regulating cell proliferation and differentiation, but a role in the mammalian ovary has not been defined. Expression of components of the HH pathway in the mouse ovary and effects of altering HH signaling in vitro were determined. RT-PCR analyses show developmentally regulated expression of sonic (Shh), indian (Ihh) and desert (Dhh) HH in the ovary. Expression is detected in whole ovary, granulosa cells, and corpora lutea. The mRNAs for the two receptors, patched homolog 1 and 2 (Ptch1, Ptch2), and the signal transducer, smoothened (Smo), are also expressed. Immunohistochemistry using an antibody that detects all three HH ligands demonstrated HH protein primarily in granulosa cells of follicles from primary to antral stages of development. Follicles also stained for PTCH1 and SMO in both granulosa and theca cells. Treatment of cultured preantral follicles and granulosa cells with recombinant SHH increased growth and proliferation while treatment with the HH pathway inhibitor, cyclopamine, had no effect. Therefore, activation of HH signaling can increase cell proliferation and follicle growth but is not essential for these processes in vitro. Treatment of granulosa cells with SHH increased levels of mRNA for Gli1, a transcriptional target of HH signaling, while cyclopamine decreased expression. SHH had no effect on production of progesterone by cultured granulosa cells, while cyclopamine increased progesterone production. The results demonstrate a functional HH pathway in the follicle and identify granulosa cells as at least one of the potential targets of HH signaling.
Omnivores must obtain diets balanced with respect to amino acids to support growth and protein synthesis. The standard paradigm used to study behavioral responses to amino acid deficiency combines deficient diets with dietary novelty. The objective of this study was to examine the effects of amino acid deficiency on the first meal of rats without the confounding effects of novelty. We report on a series of five studies of feeding behavior in rats. Rats were fed low protein diets for 5-7 d and then exposed to diets with and without essential amino acids. Rats consistently demonstrated recognition of essential amino acid deficiency within the first meal by a significant reduction in first meal duration, rejecting the deficient diets after just 12-16 min exposure. This is the first report of a rapid effect of amino acid-deficient diets without the confounding effects of dietary novelty.
Diets deficient in an indispensable amino acid have long been known to suppress food intake in rats. Detection of dietary deficiency takes place in the anterior piriform cortex (APC). Recent studies showed that the response to amino acid deficiency takes as little as 15 min to develop, but few data exist to correlate the concentration of amino acids in the APC with this rapid response. The purpose of this study was to measure the concentration of amino acids in the APC in a behaviorally relevant time frame. Rats were preconditioned by consumption of a basal diet for 7-10 d, and then given a test diet with either a control or deficient amino acid profile. Both the threonine- and leucine-deficient diets reliably depleted threonine and leucine concentration in the APC within 30 min, respectively. The control diets and a diet lacking the dispensable amino acid glycine did not lead to amino acid depletion. In combination with previous studies, the present results show that the decrease in the concentration of indispensable amino acids in the APC may be the initial sensory signal for recognition of dietary amino acid deficiency.
Rats quickly recognize and reject diets deficient in an essential amino acid. The purpose of this study was to determine whether the anterior piriform cortex (APC), the site traditionally recognized as the amino acid chemosensor, plays a role in this early behavior. Rats had cannulae implanted bilaterally into the APC, and were injected with either saline vehicle or 2 nmoles of threonine (n = 6 per group). All rats were then fed a diet imbalanced with respect to threonine. The threonine-injected group had first meals of longer duration and consumed more food. These data conformed to expectations derived from earlier studies of responses to the first meal of an amino acid imbalanced diet. We conclude that the concentration of the dietary limiting amino acid in the APC regulates acceptance and rejection of amino acid deficient diets.
Spontaneous lung hernia is an extremely rare disease entity that refers to protrusion of lung parenchyma through a chest wall without trauma or pathologic process. It typically occurs after coughing, through an intercostal defect, and in presence of obesity, chronic obstructive pulmonary disease (COPD), diabetes mellitus, and steroid use. 1 Because surgery is indicated for symptomatic cases, it should be appropriately diagnosed. It can manifest as questionable chest pain without an obvious bulge, warranting imaging in addition to physical examination, while suspecting it is difficult due to its uncommonness. CASE REPORT A 71-year-old man presented with a 3-day history of cough and dyspnea on exertion. He had COPD, obstructive sleep apnea, morbid obesity, hypertension, and dyslipidemia. He was taking atorvastatin but no antithrombotics. He denied Funding: None.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.