-1 (Freytag et al., 2001), levels in the sediment underlying them are typically greater than 1.5·mmol·l -1 (Julian et al., 1999). L. luymesi obtains sulfide from the sediment using long, root-like, posterior extensions of its body (Freytag et al., 2001; Julian et Lamellibrachia luymesi (Polychaeta, Siboglinidae) is a deep-sea vestimentiferan tubeworm that forms large bushlike aggregations at hydrocarbon seeps in the Gulf of Mexico. Like all vestimentiferans, L. luymesi obtains its nutrition from sulfide-oxidizing endosymbiotic bacteria, which it houses in an internal organ called the trophosome. This tubeworm has a lifespan of over 170·years and its survival is contingent upon the availability of sulfide during this long period. In sediments underlying L. luymesi aggregations, microbes produce sulfide by coupling sulfate reduction with hydrocarbon oxidation. L. luymesi acquires sulfide from the sediment using a rootlike posterior extension of its body that is buried in the sediment. Its symbionts then oxidize the sulfide to produce energy for carbon fixation, and release sulfate and hydrogen ions as byproducts. It is critical for the tubeworm to eliminate these waste ions, and it could do so either across its vascular plume or across its root. In this study, we measured sulfate and proton elimination rates from live L. luymesi and found that they eliminated approximately 85% of the sulfate produced by sulfide oxidation, and approximately 67% of the protons produced by various metabolic processes, across their roots. On the basis of experiments using membrane transport inhibitors, we suggest that L. luymesi has anion exchangers that mediate sulfate elimination coupled with bicarbonate uptake. Roots could be the ideal exchange surface for eliminating sulfate and hydrogen ions for two reasons. First, these ions might be eliminated across the root epithelium using facilitated diffusion, which is energetically economical. Second, sulfate and hydrogen ions are substrates for bacterial sulfate reduction, and supplying these ions into the sediment might help ensure a sustained sulfide supply for L. luymesi over its entire lifespan.
Barnabei MS, Palpant NJ, Metzger JM. Influence of genetic background on ex vivo and in vivo cardiac function in several commonly used inbred mouse strains.
EF-hand proteins are ubiquitous in cell signaling. Parvalbumin (Parv), the archetypal EF-hand protein, is a high-affinity Ca2+ buffer in many biological systems. Given the centrality of Ca2+ signaling in health and disease, EF-hand motifs designed to have new biological activities may have widespread utility. Here, an EF-hand motif substitution that had been presumed to destroy EF-hand function, that of glutamine for glutamate at position 12 of the second cation binding loop domain of Parv (ParvE101Q), markedly inverted relative cation affinities: Mg2+ affinity increased, whereas Ca2+ affinity decreased, forming a new ultra-delayed Ca2+ buffer with favorable properties for promoting cardiac relaxation. In therapeutic testing, expression of ParvE101Q fully reversed the severe myocyte intrinsic contractile defect inherent to expression of native Parv and corrected abnormal myocardial relaxation in diastolic dysfunction disease models in vitro and in vivo. Strategic design of new EF-hand motif domains to modulate intracellular Ca2+ signaling could benefit many biological systems with abnormal Ca2+ handling, including the diseased heart.
Enterovirus infection can cause severe cardiomyopathy in humans. The virus-encoded 2A protease is known to cleave the cytoskeletal protein dystrophin. It is unclear, however, whether cardiomyopathy results from the loss of dystrophin or is due to the emergence of a dominant-negative dystrophin cleavage product. We show for the first time that the 2A protease-mediated carboxyl-terminal dystrophin cleavage fragment (CtermDys) is sufficient to cause marked dystrophic cardiomyopathy. The sarcolemma-localized CtermDys fragment caused myocardial fibrosis, heightened susceptibility to myocardial ischemic injury, and increased mortality during cardiac stress testing in vivo. CtermDys cardiomyopathy was more severe than in hearts completely lacking dystrophin. In vivo titration of CtermDys peptide content revealed an inverse relationship between the decay of membrane-bound CtermDys and the restoration of full-length dystrophin at the sarcolemma, in support of a physiologically relevant loss of dystrophin function in this model. CtermDys gene titration and dystrophin replacement studies further established a target threshold of 50% membrane-bound intact dystrophin necessary to prevent mice from CtermDys cardiomyopathy. Conversely, the NtermDys fragment did not compete with dystrophin and had no pathological effect. Thus, CtermDys must be localized to the sarcolemma, with intact dystrophin <50% of normal levels, to exert dominant-negative peptide-dependent cardiomyopathy. These data support a two-hit dominant-negative disease mechanism where membrane-associated CtermDys severs the link to cortical actin and inhibits both full-length dystrophin and compensatory utrophin from binding at the membrane. Therefore, membrane-bound CtermDys is a new potential translational target for virus-mediated cardiomyopathy.
Duchenne muscular dystrophy (DMD) is a progressive and fatal disease of muscle wasting caused by loss of the cytoskeletal protein dystrophin. In the heart, DMD results in progressive cardiomyopathy and dilation of the left ventricle through mechanisms that are not fully understood. Previous reports have shown that loss of dystrophin causes sarcolemmal instability and reduced mechanical compliance of isolated cardiac myocytes. To expand upon these findings, here we have subjected the left ventricles of dystrophin-deficient mdx hearts to mechanical stretch. Unexpectedly, isolated mdx hearts showed increased left ventricular (LV) compliance compared to controls during stretch as LV volume was increased above normal end diastolic volume. During LV chamber distention, sarcomere lengths increased similarly in mdx and WT hearts despite greater excursions in volume of mdx hearts. This suggests that the mechanical properties of the intact heart cannot be modeled as a simple extrapolation of findings in single cardiac myocytes. To explain these findings, a model is proposed in which disruption of the dystrophin-glycoprotein complex perturbs cell-extracellular matrix contacts and promotes the apparent slippage of myocytes past each other during LV distension. In comparison, similar increases in LV compliance were obtained in isolated hearts from β-sarcoglycan-null and laminin-α2 mutant mice, but not in dysferlin-null mice, suggesting that increased whole-organ compliance in mdx mice is a specific effect of disrupted cell-extracellular matrix contacts and not a general consequence of cardiomyopathy via membrane defect processes. Collectively, these findings suggest a novel and cell-death independent mechanism for the progressive pathological LV dilation that occurs in DMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.