Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved ‘high-coverage’ and ‘high-accuracy’ glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.
The leading proteomic method for identifying N-glycosylated peptides is liquid chromatography coupled with tandem fragmentation mass spectrometry (LCMS/MS) followed by spectral matching of MS/MS fragment masses to a database of possible glycan and peptide combinations. Such databasedependent approaches come with challenges such as needing high-quality informative MS/MS spectra, ignoring unexpected glycan or peptide sequences, and making incorrect assignments because some glycan combinations are equivalent in mass to amino acids. To address these challenges, we present GlycopeptideGraphMS, a graph theoretical bioinformatic approach complementary to the database-dependent method. Using the AXL receptor tyrosine kinase (AXL) as a model glycoprotein with multiple N-glycosylation sites, we show that those LCMS features that could be grouped into graph networks on the basis of glycan mass and retention time differences were actually N-glycopeptides with the same peptide backbone but different N-glycan compositions. Conversely, unglycosylated peptides did not exhibit this grouping behavior. Furthermore, MS/MS sequencing of the glycan and peptide composition of just one N-glycopeptide in the graph was sufficient to identify the rest of the N-glycopeptides in the graph. By validating the identifications with exoglycosidase cocktails and MS/ MS fragmentation, we determined the experimental false discovery rate of identifications to be 2.21%. GlycopeptideGraphMS detected more than 500 unique N-glycopeptides from AXL, triple the number found by a database search with Byonic software, and detected incorrect assignments due to a nonspecific protease cleavage. This method overcomes some limitations of the database approach and is a step closer to comprehensive automated glycoproteomics.
Mammalian host cell lines are the preferred expression systems for the manufacture of complex therapeutics and recombinant proteins. However, the most utilized mammalian host systems, namely Chinese hamster ovary (CHO), Sp2/0 and NS0 mouse myeloma cells, can produce glycoproteins with non-human glycans that may potentially illicit immunogenic responses. Hence, we developed a fully human expression system based on HEK293 cells for the stable and high titer production of recombinant proteins by first knocking out GLUL (encoding glutamine synthetase) using CRISPR-Cas9 system. Expression vectors using human GLUL as selection marker were then generated, with recombinant human erythropoietin (EPO) as our model protein. Selection was performed using methionine sulfoximine (MSX) to select for high EPO expression cells. EPO production of up to 92700 U/mL of EPO as analyzed by ELISA or 696 mg/L by densitometry was demonstrated in a 2 L stirred-tank fed batch bioreactor. Mass spectrometry analysis revealed that N-glycosylation of the produced EPO was similar to endogenous human proteins and non-human glycan epitopes were not detected. Collectively, our results highlight the use of a human cellular expression system for the high titer and xenogeneic-free production of EPO and possibly other complex recombinant proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.