Interpersonal autonomic physiology is defined as the relationship between people's physiological dynamics, as indexed by continuous measures of the autonomic nervous system. Findings from this field of study indicate that physiological activity between two or more people can become associated or interdependent, often referred to as physiological synchrony. Physiological synchrony has been found in both new and established relationships across a range of contexts, and it correlates with a number of psychosocial constructs. Given these findings, interpersonal physiological interactions are theorized to be ubiquitous social processes that co-occur with observable behavior. However, this scientific literature is fragmented, making it difficult to evaluate consistency across reports. In an effort to facilitate more standardized scholarly approaches, this systematic review provides a description of existing work in the area and highlights theoretical, methodological, and statistical issues to be addressed in future interpersonal autonomic physiology research.
Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead to misinformed conclusions. To illustrate this concern, the current paper critically evaluates and attempts to reproduce results from two studies (Wall et al., 2012a; Wall et al., 2012b) that claim to drastically reduce time to diagnose autism using machine learning. Our failure to generate comparable findings to those reported by Wall and colleagues using larger and more balanced data underscores several conceptual and methodological problems associated with these studies. We conclude with proposed best-practices when using machine learning in autism research, and highlight some especially promising areas for collaborative work at the intersection of computational and behavioral science.
BACKGROUND: Current pain assessment methods in youth are suboptimal and vulnerable to bias and underrecognition of clinical pain. Facial expressions are a sensitive, specific biomarker of the presence and severity of pain, and computer vision (CV) and machine-learning (ML) techniques enable reliable, valid measurement of pain-related facial expressions from video. We developed and evaluated a CVML approach to measure pain-related facial expressions for automated pain assessment in youth. METHODS:A CVML-based model for assessment of pediatric postoperative pain was developed from videos of 50 neurotypical youth 5 to 18 years old in both endogenous/ongoing and exogenous/transient pain conditions after laparoscopic appendectomy. Model accuracy was assessed for self-reported pain ratings in children and time since surgery, and compared with by-proxy parent and nurse estimates of observed pain in youth.RESULTS: Model detection of pain versus no-pain demonstrated good-to-excellent accuracy (Area under the receiver operating characteristic curve 0.84-0.94) in both ongoing and transient pain conditions. Model detection of pain severity demonstrated moderate-to-strong correlations (r = 0.65-0.86 within; r = 0.47-0.61 across subjects) for both pain conditions. The model performed equivalently to nurses but not as well as parents in detecting pain versus no-pain conditions, but performed equivalently to parents in estimating pain severity. Nurses were more likely than the model to underestimate youth self-reported pain ratings. Demographic factors did not affect model performance.CONCLUSIONS: CVML pain assessment models derived from automatic facial expression measurements demonstrated good-to-excellent accuracy in binary pain classifications, strong correlations with patient self-reported pain ratings, and parent-equivalent estimation of children's pain levels over typical pain trajectories in youth after appendectomy. WHAT'S KNOWN ON THIS SUBJECT:Clinical pain assessment methods in youth are vulnerable to underestimation bias and underrecognition. Facial expressions are sensitive, specific biomarkers of the presence and severity of pain. Computer vision-based pattern recognition enables measurement of painrelated facial expressions from video. WHAT THIS STUDY ADDS:This study demonstrates initial validity for developing computer vision algorithms for automated pain assessment in children. The system developed and tested in this study could provide standardized, continuous, and valid patient monitoring that is potentially scalable. Mr Sikka performed the machine learning under the guidance of Dr Bartlett, drafted the initial manuscript, and reviewed and revised the manuscript; Mr Ahmed carried out a portion of the initial analyses and reviewed and revised the manuscript; Dr Diaz performed data collection, performed a portion of the initial analyses, and reviewed and revised the manuscript; Drs Craig and Goodwin reviewed all analyses, and critically reviewed and revised the manuscript; Drs Bartlett and Huang concep...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.