This study examined three aspects of protogynous sex change in Lythrypnus dalli (Gobiidae): (1) social influences on the rate of sex change, (2) the sequence of behavioural changes, and (3) neuroendocrine changes. Social groups consisted of either four females, or four females with a male who was subsequently removed. Sex change occurred most rapidly in maleremoved groups when the sex changer was larger than other females. Sex changers in female only groups and sex changers not larger than other females in male-removed groups changed sex at similar rates. These differences may be explained by two factors that affect dominance: prior knowledge of the social group and greater size. Sex changers were dominant to other females prior to male removal, and larger sex changers increased displacement rates three-fold immediately after male removal. Sex changers in the other groups did not show this increase in displacements. This early establishment of dominance accounts for the overall difference in the rate of sex change. Prior to spawning, however, all sex changers increased displacements and performed maletypical displays. Arginine vasotocin-immunoreactive forebrain cells of sex changers were similar in size to field-collected males, and larger than field-collected females. Previously nesting males also changed sex in male-only groups, but at slow rates. These data are combined with those of existing studies to generate an integrative model of sex change in this goby.
Gonadal hormones are important mediators of sexual and aggressive behavior in vertebrates. Recent evidence suggests that the peptide hormones arginine vasotocin (AVT) and its mammalian homologue arginine vasopressin (AVP) often critically mediate these gonadal hormone effects on behavior and have direct influences on behavioral variation. Behavioral differences between sexes, across reproductive states, and even among closely related species are correlated with differences in central AVT/AVP systems in many species. We report differences in hypothalamic AVT mRNA levels between distinct alternate male phenotypes and with female-to-male sex change in the bluehead wrasse (Thalassoma bifasciatum), a teleost fish. The aggressively dominant and strongly courting male phenotype has greater numbers of AVT mRNA producing cells in the magnocellular preoptic area of the hypothalamus than females. Levels of AVT mRNA within these cells in dominant males are also approximately three times female levels whereas the non-aggressive male phenotype has AVT mRNA levels approximately twice female levels. Behavioral sex change is very rapid in this species and is not dependent on the presence of gonads. Conversely, rapid increases in sexual and aggressive behavior during sex change are closely paralleled by approximate fourfold increases in hypothalamic AVT-mRNA levels. The behavioral plasticity shown by bluehead wrasses in response to social environment might be mediated in part by a neuropeptide, AVT, with changes in the gonads and gonadal hormones as the result rather than the cause of behavioral dominance.
Social interactions can generate rapid and dramatic changes in behaviour and neuroendocrine activity. We investigated the effects of a changing social environment on aggressive behaviour and brain aromatase activity (bAA) in a sex-changing fish, Lythrypnus dalli. Aromatase is responsible for the conversion of androgen into oestradiol. Male removal from a socially stable group resulted in rapid and dramatic (> or =200%) increases in aggression in the dominant female, which will become male usually 7-10 days later. These dominant females and recently sex-changed individuals had lower bAA but similar gonadal aromatase activity (gAA) compared to control females, while established males had lower bAA than all groups and lower gAA than all groups except dominant females. Within hours of male removal, dominant females' aggressive behaviour was inversely related to bAA but not gAA. These results are novel because they are the first to: (i) demonstrate socially induced decreases in bAA levels corresponding with increased aggression, (ii) identify this process as a possible neurochemical mechanism regulating the induction of behavioural, and subsequently gonadal, sex change and (iii) show differential regulation of bAA versus gAA resulting from social manipulations. Combined with other studies, this suggests that aromatase activity may modulate fast changes in vertebrate social behaviour.
Several batrachoidids have been known to produce sounds associated with courtship and agonistic interactions, and their repertoires have been studied acoustically and behaviourally. In contrast, sound production of the Lusitanian toadfish Halobatrachus didactylus, although often noted, has not been acoustically studied.This sedentary predator of Northeastern Atlantic coastal waters is usually found in sandy and muddy substrates, under rocks or crevices. Sound recordings were made in Ria Formosa, a lagoon complex in southern Portugal. The sound producing apparatus was studied in adult individuals of both sexes captured by local fishermen.It is shown that this species produces acoustic emissions similar to other batrachoidids. It produces a long, rhythmical, tonal sound, often in choruses, which is comparable to the boatwhistle or hum signals of Opsanus and Porichthys, and a complex of signals that were classified as grunts, croaks, double croaks and mixed calls ('grunt-croak'). As in other toadfishes, H. didactylus presents sonic muscles connected to a hi-lobed swimbladder. Asynchronous contractions of the sonic muscles were detected when massaging the ventral surface of the fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.