In chemical kinetics research, kinetic models containing hundreds of species and tens of thousands of elementary reactions are commonly used to understand and predict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG) is a software suite developed to automatically generate such models by incorporating and extrapolating from a database of known thermochemical and kinetic parameters.Here, we present the recent version 3 release of RMG and highlight improvements since the previously published description of RMG v1.0. One important change is that RMG v3.0 is now Python 3 compatible, which supports the most up-to-date versions of cheminformatics and machine learning packages that RMG depends on. Additionally, RMG can now generate heterogeneous catalysis models, in addition to the previously available gas-and liquid-phase capabilities. For model analysis, new methods for local and global uncertainty analysis have been implemented to supplement first-order sensitivity analysis. The RMG database of thermochemical and kinetic parameters has been significantly expanded to cover more types of chemistry. The present release also includes parallelization for reaction generation and on-the-fly quantum calculations, and a new molecule isomorphism approach to improve computational performance. Overall, RMG v3.0 includes many changes which improve the accuracy of the generated chemical mechanisms and allow for exploration of a wider range of chemical systems.
The Reaction Mechanism Generator (RMG) database for chemical property prediction is presented. The RMG database consists of curated datasets and estimators for accurately predicting the parameters necessary for constructing a wide variety of chemical kinetic mechanisms. These datasets and estimators are mostly published and enable prediction of thermodynamics, kinetics, solvation effects, and transport properties. For thermochemistry prediction, the RMG database contains 45 libraries of thermochemical parameters with a combination of 4564 entries and a group additivity scheme with 9 types of corrections including radical, polycyclic, and surface absorption corrections with 1580 total curated groups and parameters for a graph convolutional neural network trained using transfer learning from a set of >130 000 DFT calculations to 10 000 high-quality values. Correction schemes for solvent−solute effects, important for thermochemistry in the liquid phase, are available. They include tabulated values for 195 pure solvents and 152 common solutes and a group additivity scheme for predicting the properties of arbitrary solutes. For kinetics estimation, the database contains 92 libraries of kinetic parameters containing a combined 21 000 reactions and contains rate rule schemes for 87 reaction classes trained on 8655 curated training reactions. Additional libraries and estimators are available for transport properties. All of this information is easily accessible through the graphical user interface at https://rmg.mit.edu. Bulk or on-the-fly use can be facilitated by interfacing directly with the RMG Python package which can be installed from Anaconda. The RMG database provides kineticists with easy access to estimates of the many parameters they need to model and analyze kinetic systems. This helps to speed up and facilitate kinetic analysis by enabling easy hypothesis testing on pathways, by providing parameters for model construction, and by providing checks on kinetic parameters from other sources.
In chemical kinetics research, kinetic models containing hundreds of species and tens of thousands of elementary reactions are commonly used to understand and predict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG) is a software suite developed to automatically generate such models by incorporating and extrapolating from a database of known thermochemical and kinetic parameters. Here, we present the recent version 3 release of RMG and highlight improvements since the previously published description of RMG v1.0. One important change is that RMG v3.0 is now Python 3 compatible, which supports the most up-to-date versions of cheminformatics and machine learning packages that RMG depends on. Additionally, RMG can now generate heterogeneous catalysis models, in addition to the previously available gas- and liquid-phase capabilities. For model analysis, new methods for local and global uncertainty analysis have been implemented to supplement first-order sensitivity analysis. The RMG database of thermochemical and kinetic parameters has been significantly expanded to cover more types of chemistry. The present release also includes parallelization for reaction generation and on-the-fly quantum calculations, and a new molecule isomorphism approach to improve computational performance. Overall, RMG v3.0 includes many changes which improve the accuracy of the generated chemical mechanisms and allow for exploration of a wider range of chemical systems.
Large reaction mechanisms are often used to describe the combustion behavior of transportation-relevant fuels like gasoline, where these are typically represented by surrogate blends, e.g., n-heptane/iso-octane/toluene. We describe efforts to quantify the uncertainty in the predictions of such mechanisms at realistic engine conditions, seeking to better understand the robustness of the model as well as the important reaction pathways and their impacts on combustion behavior. In this work, we examine the importance of taking into account correlations among reactions that utilize the same rate rules and those with multiple product channels on forward propagation of uncertainty by Monte Carlo simulations. Automated means are developed to generate the uncertainty factor assignment for a detailed chemical kinetic mechanism, by first uniquely identifying each reacting species, then sorting each of the reactions based on the rate rule utilized. Simulation results reveal that in the low temperature combustion regime for iso-octane, the majority of the uncertainty in the model predictions can be attributed to low temperature reactions of the fuel sub-mechanism. The foundational, or small-molecule chemistry (C 0-C 4) only contributes significantly to uncertainties in the predictions at the highest temperatures (Tc=900 K). Accounting for correlations between important reactions is shown to produce non-negligible differences in the estimates of uncertainty. Including correlations among reactions that use the same rate rules increases uncertainty in the model predictions, while accounting for correlations among reactions with multiple branches decreases uncertainty in some cases. Significant non-linear response is observed in the model predictions depending on how the probability distributions of the uncertain rate constants are defined. It is concluded that care must be exercised in defining these probability distributions in order to reduce bias, and physically unrealistic estimates in the forward propagation of uncertainty for a range of UQ activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.