Highlights d Fab-dimerized glycan-reactive (FDG) natural antibodies (Abs) are prevalent in primates d Fab-dimerization can occur independent of V H domainswapping d Precursor FDG natural Abs acquire neutralization breadth in retroviral infection d FDG Abs recognize a quaternary epitope in the S2 subunit of SARS-CoV-2 spike
A series of novel, highly potent, selective, and ATP-competitive mammalian target of rapamycin (mTOR) inhibitors based on a benzoxazepine scaffold have been identified. Lead optimization resulted in the discovery of inhibitors with low nanomolar activity and greater than 1000-fold selectivity over the closely related PI3K kinases. Compound 28 (XL388) inhibited cellular phosphorylation of mTOR complex 1 (p-p70S6K, pS6, and p-4E-BP1) and mTOR complex 2 (pAKT (S473)) substrates. Furthermore, this compound displayed good pharmacokinetics and oral exposure in multiple species with moderate bioavailability. Oral administration of compound 28 to athymic nude mice implanted with human tumor xenografts afforded significant and dose-dependent antitumor activity.
The phosphoinositide 3-kinases (PI3Ks) have been linked to an extraordinarily diversified group of cellular functions making these enzymes compelling targets for the treatment of disease. A large body of evidence has linked PI3Kγ to the modulation of autoimmune and inflammatory processes making it an intriguing target for drug discovery. Our high-throughput screening (HTS) campaign revealed two hits that were nominated for further optimization studies. The in vitro activity of the first HTS hit, designated as the sulfonylpiperazine scaffold, was optimized utilizing structure-based design. However, nonoptimal pharmacokinetic properties precluded this series from further studies. An overlay of the X-ray structures of the sulfonylpiperazine scaffold and the second HTS hit within their complexes with PI3Kγ revealed a high degree of overlap. This feature was utilized to design a series of hybrid analogues including advanced leads such as 31 with desirable potency, selectivity, and oral bioavailability.
A series of nitrosyl tris(5,10,15-aryl)corrolate complexes of iron(III) Fe(Ar3C)(NO) with different substituents on the aryl groups have been prepared, and certain spectroscopic and reaction properties were compared. The cyclic voltammetric analysis of the various Fe(Ar3C)(NO) complexes demonstrated that both the one-electron oxidation and one-electron reduction potentials respond in systematic and nearly identical trends relative to the electron-donor properties of the substituents. A similar pattern was seen in the nitrosyl stretching frequency, nu(NO), which modestly decreased with the stronger donor substituents. Flash photolysis of Fe(Ar3C)(NO) solutions in toluene leads to NO dissociation followed by rapid [NO]-dependent decay of the transients formed (presumably Fe(Ar3C)) to regenerate the original spectra. As was seen in an earlier flash photolysis study of Fe(TNPC)(NO) (TNPC3- = 5,10,15-tris(4-nitro-phenyl)corrolate; Joseph, C.; Ford, P. C. J. Am. Chem. Soc. 2005, 127, 6737-6743), the second-order rate constants, k(NO), are all much faster ((1-9) x 10(8) M(-1) s(-1) at 298 K) than those for analogous iron(III) complexes of porphyrins. However, on a more microscopic level there is no obvious pattern in these rates with respect to the donor properties of the aryl ring substituents. The high reactivity of the ferric triarylcorrolates with NO data is interpreted in terms of the strongly electron-donating character of the Ar3C3- ligand and the quartet electronic configuration of the Fe(Ar3C) intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.