Background-Cellular changes associated with diabetic and idiopathic gastroparesis are not well described.Aim-Describe histologic abnormalities in gastroparesis and compare findings in idiopathic versus diabetic gastroparesis.Methods-Full thickness gastric body biopsies were obtained from 40 gastroparetics (20 diabetic) and matched controls. Sections were stained for H&E and trichrome, and immunolabeled with antibodies against PGP 9.5, nNOS, VIP, substance P and tyrosine hydroxylase to quantify nerves, S100β for glia, Kit for interstitial cells of Cajal (ICC), CD45 and CD68, for immune cells and smoothelin for smooth muscle cells. Tissue was also examined by transmission electron microscopy (TEM).Results-Histological abnormalities were found in 83% of patients. Most common defects were loss of ICC with remaining ICC showing injury, an abnormal immune infiltrate containing macrophages, and decreased nerve fibers. On light microscopy, no significant differences were found between diabetic and idiopathic gastroparesis with the exception of nNOS expression which was decreased in more idiopathic gastroparetics (40%) compared to diabetic (20%) patients by visual grading. On electron microscopy, a markedly increased connective tissue stroma was present in both disorders.Conclusion-This study suggests that on full thickness biopsies, cellular abnormalities are found in the majority of patients with gastroparesis. Most common findings were loss of Kit expression suggesting loss of ICC and an increase in CD45 and CD68 immunoreactivity. These findings suggest that examination of tissue can lead to valuable insights into the pathophysiology of these disorders and offers hope that new therapeutic targets can be found.
Background and Aims-Diabetic gastroparesis (delayed gastric emptying) is a well recognized complication of diabetes. Diabetic gastroparesis causes considerable morbidity and makes glucose control difficult. Kit-positive interstitial cells of Cajal (ICC) are required for normal gastric emptying. We hypothesized that there is a loss of Kit in diabetic gastroparesis due to elevated oxidative stress and that the elevated oxidative stress is due to low levels of heme oxygenase-1 (HO1), an important cytoprotective molecule against oxidative injury.
The effect of age on the anatomy and function of the human colon is incompletely understood. The prevalence of disorders in adults such as constipation increase with age but it is unclear if this is due to confounding factors or age-related structural defects. The aim of this study was to determine number and subtypes of enteric neurons and neuronal volumes in the human colon of different ages. Normal colon (descending and sigmoid) from 16 patients (9 male) was studied; ages 33–99. Antibodies to HuC/D, ChAT, nNOS, and PGP9.5 were used. Effect of age was determined by testing for linear trends using regression analysis. In the myenteric plexus, number of Hu-positive neurons declined with age (slope = −1.3 neurons/mm/10yrs, p =0.03). The number of ChAT-positive neurons also declined with age (slope = −1.1 neurons/mm/10yrs of age, p=0.02). The number of nNOS-positive neurons did not decline with age. As a result, the ratio of nNOS to Hu increased (slope= 0.03 per 10yrs of age, p=0.01). In the submucosal plexus, the number of neurons did not decline with age (slope = − 0.3 neurons/mm/10 yrs, p =0.09). Volume of nerve fibers in the circular muscle and volume of neuronal structures in the myenteric plexus did not change with age. In conclusion, the number of neurons in the human colon declines with age with sparing of nNOS- positive neurons. This change was not accompanied by changes in total volume of neuronal structures suggesting compensatory changes in the remaining neurons.
Background-Cellular changes associated with diabetic (DG) and idiopathic gastroparesis (IG) have recently been described from patients enrolled in the Gastroparesis Clinical Research Consortium. The association of these cellular changes with gastroparesis symptoms and gastric emptying is unknown.Aim-Relate cellular changes to symptoms and gastric emptying in patients with gastroparesis.Methods-Earlier, using full thickness gastric body biopsies from 20 DG, 20 IG and 20 matched controls, we found decreased interstitial cells of Cajal (ICC) and enteric nerves and an increase in immune cells in both DG and IG. Here, demographic, symptoms (gastroparesis cardinal symptom index score), and gastric emptying were related to cellular alterations using Pearson's correlation coefficients.Results-ICC counts inversely correlated with 4 hours gastric retention in DG but not in IG (r= −0.6, p=0.008, DG, r=0.2, p=0.4, IG). There was also a significant correlation between loss of ICC and enteric nerves in DG but not in IG (r=0.5, p=0.03 for DG, r=0.3, p=0.16, IG). IG with a myenteric immune infiltrate scored higher on the average GCSI (3.6±0.7 vs 2.7±0.9, p=0.05) and nausea score (3.8±0.9 vs 2.6±1.0, p=0.02) as compared to those without an infiltrate. Conclusions-In
The ultrastructural changes in diabetic and idiopathic gastroparesis are not well studied and it is not known whether there are different defects in the two disorders. As part of the Gastroparesis Clinical Research Consortium, full thickness gastric body biopsies from 20 diabetic and 20 idiopathic gastroparetics were studied by light microscopy. Abnormalities were found in many (83%) but not all patients. Among the common defects were loss of interstitial cells of Cajal (ICC) and neural abnormalities. No distinguishing features were seen between diabetic and idiopathic gastroparesis. Our aim was to provide a detailed description of the ultrastructural abnormalities, compare findings between diabetic and idiopathic gastroparesis and determine if patients with apparently normal immunohistological features have ultrastructural abnormalities. Tissues from 40 gastroparetic patients and 24 age- and sex-matched controls were examined by transmission electron microscopy (TEM). Interstitial cells of Cajal showing changes suggestive of injury, large and empty nerve endings, presence of lipofuscin and lamellar bodies in the smooth muscle cells were found in all patients. However, the ultrastructural changes in ICC and nerves differed between diabetic and idiopathic gastroparesis and were more severe in idiopathic gastroparesis. A thickened basal lamina around smooth muscle cells and nerves was characteristic of diabetic gastroparesis whereas idiopathic gastroparetics had fibrosis, especially around the nerves. In conclusion, in all the patients TEM showed abnormalities in ICC, nerves and smooth muscle consistent with the delay in gastric emptying. The significant differences found between diabetic and idiopathic gastroparesis offers insight into pathophysiology as well as into potential targeted therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.